skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

Abstract

In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

Inventors:
; ; ;
Issue Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1264475
Patent Number(s):
9,393,550
Application Number:
13/745,092
Assignee:
NORTHWESTERN UNIVERSITY (Evanston, IL)
DOE Contract Number:  
FG02-03ER15457
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Jan 18
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Liang, Yu Teng, Vijayan, Baiju K., Gray, Kimberly A., and Hersam, Mark C. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same. United States: N. p., 2016. Web.
Liang, Yu Teng, Vijayan, Baiju K., Gray, Kimberly A., & Hersam, Mark C. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same. United States.
Liang, Yu Teng, Vijayan, Baiju K., Gray, Kimberly A., and Hersam, Mark C. Tue . "Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same". United States. https://www.osti.gov/servlets/purl/1264475.
@article{osti_1264475,
title = {Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same},
author = {Liang, Yu Teng and Vijayan, Baiju K. and Gray, Kimberly A. and Hersam, Mark C.},
abstractNote = {In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {7}
}

Patent:

Save / Share:

Works referenced in this record:

Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons
journal, March 2007

  • Kongkanand, Anusorn; Martínez Domínguez, Rebeca; Kamat, Prashant V.
  • Nano Letters, Vol. 7, Issue 3
  • DOI: 10.1021/nl0627238

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results
journal, May 1995

  • Linsebigler, Amy L.; Lu, Guangquan.; Yates, John T.
  • Chemical Reviews, Vol. 95, Issue 3
  • DOI: 10.1021/cr00035a013

Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons
journal, February 2010

  • Roy, Somnath C.; Varghese, Oomman K.; Paulose, Maggie
  • ACS Nano, Vol. 4, Issue 3
  • DOI: 10.1021/nn9015423

Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders
journal, February 1979

  • Inoue, Tooru; Fujishima, Akira; Konishi, Satoshi
  • Nature, Vol. 277, Issue 5698
  • DOI: 10.1038/277637a0

Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO 2 Using EPR
journal, May 2003

  • Hurum, Deanna C.; Agrios, Alexander G.; Gray, Kimberly A.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 19
  • DOI: 10.1021/jp0273934

Photoreactive TiO 2 /Carbon Nanotube Composites: Synthesis and Reactivity
journal, July 2008

  • Yao, Yuan; Li, Gonghu; Ciston, Shannon
  • Environmental Science & Technology, Vol. 42, Issue 13
  • DOI: 10.1021/es800191n

P25-Graphene Composite as a High Performance Photocatalyst
journal, December 2009

  • Zhang, Hao; Lv, Xiaojun; Li, Yueming
  • ACS Nano, Vol. 4, Issue 1
  • DOI: 10.1021/nn901221k

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Photocatalytic Carbon-Nanotube-TiO2 Composites
journal, June 2009

  • Woan, Karran; Pyrgiotakis, Georgios; Sigmund, Wolfgang
  • Advanced Materials, Vol. 21, Issue 21, p. 2233-2239
  • DOI: 10.1002/adma.200802738

To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO 2 Nanostructured Films?
journal, July 2010

  • Ng, Yun Hau; Lightcap, Ian V.; Goodwin, Kevin
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 15
  • DOI: 10.1021/jz100728z

Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange
journal, December 2010

  • Liang, Yu Teng; Hersam, Mark C.
  • Journal of the American Chemical Society, Vol. 132, Issue 50, p. 17661-17663
  • DOI: 10.1021/ja107661g

A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents
journal, June 2010

  • Dubin, Sergey; Gilje, Scott; Wang, Kan
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100511a

New insights into the structure and reduction of graphite oxide
journal, July 2009

  • Gao, Wei; Alemany, Lawrence B.; Ci, Lijie
  • Nature Chemistry, Vol. 1, Issue 5, p. 403-408
  • DOI: 10.1038/nchem.281

Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents
journal, April 2009

  • Park, Sungjin; An, Jinho; Jung, Inhwa
  • Nano Letters, Vol. 9, Issue 4, p. 1593-1597
  • DOI: 10.1021/nl803798y

High-yield production of graphene by liquid-phase exfoliation of graphite
journal, August 2008

  • Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa
  • Nature Nanotechnology, Vol. 3, Issue 9, p. 563-568
  • DOI: 10.1038/nnano.2008.215

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
journal, April 2008

  • Eda, Goki; Fanchini, Giovanni; Chhowalla, Manish
  • Nature Nanotechnology, Vol. 3, Issue 5, p. 270-274
  • DOI: 10.1038/nnano.2008.83

Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite
journal, August 2009

  • Cote, Laura J.; Cruz-Silva, Rodolfo; Huang, Jiaxing
  • Journal of the American Chemical Society, Vol. 131, Issue 31, p. 11027-11032
  • DOI: 10.1021/ja902348k

Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots
journal, February 2010

  • Pan, Dengyu; Zhang, Jingchun; Li, Zhen
  • Advanced Materials, Vol. 22, Issue 6, p. 734-738
  • DOI: 10.1002/adma.200902825

Stacking-Dependent Optical Conductivity of Bilayer Graphene
journal, June 2010

  • Wang, Yingying; Ni, Zhenhua; Liu, Lei
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn1004974

Introduction to Surface Chemistry and Catalysis
journal, January 1995

  • Somorjai, Gabor A.; Bent, Brian E.
  • Physics Today, Vol. 48, Issue 1
  • DOI: 10.1063/1.2807879

Graphene-Based Nanoassemblies for Energy Conversion
journal, January 2011

  • Kamat, Prashant V.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz101639v

Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets
journal, November 2007

  • Gomez-Navarro, Cristina; Weitz, R. Thomas; Bittner, Alexander M.
  • Nano Letters, Vol. 7, Issue 11, p. 3499-3503
  • DOI: 10.1021/nl072090c

100-GHz Transistors from Wafer-Scale Epitaxial Graphene
journal, February 2010

  • Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.
  • Science, Vol. 327, Issue 5966, p. 662-662
  • DOI: 10.1126/science.1184289

A synergistic assembly of nanoscale lamellar photoconductor hybrids
journal, December 2008

  • Sofos, Marina; Goldberger, Joshua; Stone, David A.
  • Nature Materials, Vol. 8, Issue 1, p. 68-75
  • DOI: 10.1038/nmat2336

Emerging Methods for Producing Monodisperse Graphene Dispersions
journal, December 2009

  • Green, Alexander A.; Hersam, Mark C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 2, p. 544-549
  • DOI: 10.1021/jz900235f

Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Anatase TiO2 single crystals with a large percentage of reactive facets
journal, May 2008

  • Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang
  • Nature, Vol. 453, Issue 7195
  • DOI: 10.1038/nature06964

Enhancement of Photoexcited Charge Transfer by {001} Facet-Dominating TiO 2 Nanoparticles
journal, October 2011

  • Maitani, Masato M.; Tanaka, Keita; Mochizuki, Dai
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2011622

Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support
journal, December 2009

  • Kamat, Prashant V.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 2
  • DOI: 10.1021/jz900265j

Large area mosaic films of graphene–titania: self-assembly at the liquid–air interface and photo-responsive behavior
journal, January 2011

  • Lambert, Timothy N.; Chavez, Carlos A.; Bell, Nelson S.
  • Nanoscale, Vol. 3, Issue 1
  • DOI: 10.1039/C0NR00638F

Graphene-based photocatalytic composites
journal, January 2011


Towards Rationally Designed Graphene-Based Materials and Devices
journal, March 2012

  • Liang, Yu Teng; Hersam, Mark C.
  • Macromolecular Chemistry and Physics, Vol. 213, Issue 10-11
  • DOI: 10.1002/macp.201100572

Synergetic Effect of MoS 2 and Graphene as Cocatalysts for Enhanced Photocatalytic H 2 Production Activity of TiO 2 Nanoparticles
journal, April 2012

  • Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek
  • Journal of the American Chemical Society, Vol. 134, Issue 15
  • DOI: 10.1021/ja302846n

Enhanced photocatalytic activity of mesoporous TiO 2 aggregates by embedding carbon nanotubes as electron-transfer channel
journal, January 2011

  • Yu, Jiaguo; Ma, Tingting; Liu, Shengwei
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 8
  • DOI: 10.1039/C0CP01139H

Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets
journal, January 2011

  • Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek
  • Nanoscale, Vol. 3, Issue 9
  • DOI: 10.1039/C1NR10610D

Progress towards monodisperse single-walled carbon nanotubes
journal, May 2008


Nonradiative recombination of excitons in carbon nanotubes mediated by free charge carriers
journal, October 2008


Sorting carbon nanotubes by electronic structure using density differentiation
journal, October 2006

  • Arnold, Michael S.; Green, Alexander A.; Hulvat, James F.
  • Nature Nanotechnology, Vol. 1, Issue 1, p. 60-65
  • DOI: 10.1038/nnano.2006.52

Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production
journal, July 2011

  • Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.
  • Nano Letters, Vol. 11, Issue 7, p. 2865-2870
  • DOI: 10.1021/nl2012906