skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective layer disordering in III-nitrides with a capping layer

Abstract

Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

Inventors:
;
Issue Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1257205
Patent Number(s):
9,368,677
Application Number:
14/540,686
Assignee:
Sandia Corporation (Albuquerque, NM)
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Nov 13
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wierer, Jr., Jonathan J., and Allerman, Andrew A. Selective layer disordering in III-nitrides with a capping layer. United States: N. p., 2016. Web.
Wierer, Jr., Jonathan J., & Allerman, Andrew A. Selective layer disordering in III-nitrides with a capping layer. United States.
Wierer, Jr., Jonathan J., and Allerman, Andrew A. Tue . "Selective layer disordering in III-nitrides with a capping layer". United States. https://www.osti.gov/servlets/purl/1257205.
@article{osti_1257205,
title = {Selective layer disordering in III-nitrides with a capping layer},
author = {Wierer, Jr., Jonathan J. and Allerman, Andrew A.},
abstractNote = {Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {6}
}

Patent:

Save / Share:

Works referenced in this record:

Disorder of an AlAs‐GaAs superlattice by impurity diffusion
journal, May 1981

  • Laidig, W. D.; Holonyak, N.; Camras, M. D.
  • Applied Physics Letters, Vol. 38, Issue 10
  • DOI: 10.1063/1.92159

Impurity diffusion and layer interdiffusion in Al x Ga 1− x As‐GaAs heterostructures
journal, August 1988

  • Deppe, D. G.; Holonyak, N.; Plano, W. E.
  • Journal of Applied Physics, Vol. 64, Issue 4
  • DOI: 10.1063/1.341759

Impurity‐induced layer disordering of high gap In y (Al x Ga 1− x ) 1− y P heterostructures
journal, April 1988

  • Deppe, D. G.; Nam, D. W.; Holonyak, N.
  • Applied Physics Letters, Vol. 52, Issue 17
  • DOI: 10.1063/1.99132

Impurity‐induced disordering of single well Al x Ga 1− x As‐GaAs quantum well heterostructures
journal, February 1984

  • Meehan, K.; Brown, J. M.; Camras, M. D.
  • Applied Physics Letters, Vol. 44, Issue 4
  • DOI: 10.1063/1.94798

Optical properties of undoped n-AlGaN/GaN superlattices as affected by built-in and external-electric field and by ar-implantation-induced partial disordering
journal, May 2002

  • Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.
  • Journal of Electronic Materials, Vol. 31, Issue 5
  • DOI: 10.1007/s11664-002-0088-5

Disordering of InGaN/GaN Superlattices After High-Pressure Annealing
journal, January 1998


Thermal Annealing of InGaN/GaN Strained-Layer Quantum Well
journal, January 1998


Sub-picosecond all-optical gate utilizing aN intersubband transition
journal, January 2005


GaN/AlN-based quantum-well infrared photodetector for 1.55 μm
journal, July 2003

  • Hofstetter, Daniel; Schad, Sven-Silvius; Wu, Hong
  • Applied Physics Letters, Vol. 83, Issue 3
  • DOI: 10.1063/1.1594265

Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of λ∼1.75–4.2 μm
journal, July 2000

  • Gmachl, Claire; Ng, Hock M.; Cho, Alfred Y.
  • Applied Physics Letters, Vol. 77, Issue 3
  • DOI: 10.1063/1.126968

Indium surfactant effect on AlN∕GaN heterostructures grown by metal-organic vapor-phase epitaxy: Applications to intersubband transitions
journal, April 2006

  • Nicolay, S.; Feltin, E.; Carlin, J. -F.
  • Applied Physics Letters, Vol. 88, Issue 15
  • DOI: 10.1063/1.2186971

Blueshift of intersubband transition wavelength in AlN/GaN multiple quantum wells by low temperature metal organic vapor phase epitaxy using pulse injection method
journal, October 2009

  • Yang, Jung-Seung; Sodabanlu, Hassanet; Sugiyama, Masakazu
  • Applied Physics Letters, Vol. 95, Issue 16
  • DOI: 10.1063/1.3254230

Magnetic properties of manganese tartrate (abstract)
journal, April 1991

  • Paduan‐Filho, A.; Carlin, Richard L.
  • Journal of Applied Physics, Vol. 69, Issue 8
  • DOI: 10.1063/1.347800