skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanowire mesh solar fuels generator

Abstract

This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

Inventors:
; ; ;
Issue Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1254179
Patent Number(s):
9,347,141
Application Number:
13/658,707
Assignee:
The Regents of the University of California (Oakland, CA)
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Oct 23
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Yang, Peidong, Chan, Candace, Sun, Jianwei, and Liu, Bin. Nanowire mesh solar fuels generator. United States: N. p., 2016. Web.
Yang, Peidong, Chan, Candace, Sun, Jianwei, & Liu, Bin. Nanowire mesh solar fuels generator. United States.
Yang, Peidong, Chan, Candace, Sun, Jianwei, and Liu, Bin. Tue . "Nanowire mesh solar fuels generator". United States. https://www.osti.gov/servlets/purl/1254179.
@article{osti_1254179,
title = {Nanowire mesh solar fuels generator},
author = {Yang, Peidong and Chan, Candace and Sun, Jianwei and Liu, Bin},
abstractNote = {This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {5}
}

Patent:

Save / Share:

Works referenced in this record:

TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water
journal, April 2008

  • Zhang, Xiwang; Du, Alan Jianhong; Lee, Peifung
  • Journal of Membrane Science, Vol. 313, Issue 1-2, p. 44-51
  • DOI: 10.1016/j.memsci.2007.12.045

Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
journal, April 2011

  • Hou, Yidong; Abrams, Billie L.; Vesborg, Peter C. K.
  • Nature Materials, Vol. 10, Issue 6
  • DOI: 10.1038/nmat3008

Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution
conference, August 2010

  • Warren, Emily L.; Boettcher, Shannon W.; McKone, James R.
  • SPIE Solar Energy + Technology, SPIE Proceedings
  • DOI: 10.1117/12.860994

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Preparation and photoluminescence of highly ordered TiO2 nanowire arrays
journal, February 2001

  • Lei, Y.; Zhang, L. D.; Meng, G. W.
  • Applied Physics Letters, Vol. 78, Issue 8
  • DOI: 10.1063/1.1350959

Surfactant-Free, Large-Scale, Solution–Liquid–Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction
journal, December 2011

  • Sun, Jianwei; Liu, Chong; Yang, Peidong
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja2083398

Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

Development of photocatalyst materials for water splitting
journal, February 2006


Photoelectrochemical cells
journal, November 2001


Z-scheme photocatalyst systems for water splitting under visible light irradiation
journal, January 2011


Limiting and realizable efficiencies of solar photolysis of water
journal, August 1985

  • Bolton, James R.; Strickler, Stewart J.; Connolly, John S.
  • Nature, Vol. 316, Issue 6028, p. 495-500
  • DOI: 10.1038/316495a0

Photoassisted Electrolysis of Water by Visible Irradiation of a p-Type Gallium Phosphide Electrode
journal, May 1977


pn photoelectrolysis cells
journal, August 1976

  • Nozik, A. J.
  • Applied Physics Letters, Vol. 29, Issue 3
  • DOI: 10.1063/1.89004

Solar induced water splitting with p/n heterotype photochemical diodes: n-Fe2O3/p-GaP
journal, April 1981


Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth
journal, December 1995


Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
journal, January 2011

  • Boettcher, Shannon W.; Warren, Emily L.; Putnam, Morgan C.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1216-1219
  • DOI: 10.1021/ja108801m

High Density n-Si/n-TiO 2 Core/Shell Nanowire Arrays with Enhanced Photoactivity
journal, January 2009

  • Hwang, Yun Jeong; Boukai, Akram; Yang, Peidong
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl8032763

Water photolysis with a cross-linked titanium dioxidenanowire anode
journal, January 2011

  • Liu, Mingzhao; de Leon Snapp, Nathalie; Park, Hongkun
  • Chem. Sci., Vol. 2, Issue 1
  • DOI: 10.1039/C0SC00321B

Hydrogen-Treated TiO 2 Nanowire Arrays for Photoelectrochemical Water Splitting
journal, July 2011

  • Wang, Gongming; Wang, Hanyu; Ling, Yichuan
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201766h

Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution
journal, March 2008

  • Jitputti, Jaturong; Suzuki, Yoshikazu; Yoshikawa, Susumu
  • Catalysis Communications, Vol. 9, Issue 6, p. 1265-1271
  • DOI: 10.1016/j.catcom.2007.11.016

Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting
journal, June 2009

  • Yang, Xunyu; Wolcott, Abraham; Wang, Gongming
  • Nano Letters, Vol. 9, Issue 6
  • DOI: 10.1021/nl900772q

WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production
journal, November 2009

  • Chakrapani, Vidhya; Thangala, Jyothish; Sunkara, Mahendra K.
  • International Journal of Hydrogen Energy, Vol. 34, Issue 22, p. 9050-9059
  • DOI: 10.1016/j.ijhydene.2009.09.031

Vertically Aligned WO 3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties
journal, January 2011

  • Su, Jinzhan; Feng, Xinjian; Sloppy, Jennifer D.
  • Nano Letters, Vol. 11, Issue 1
  • DOI: 10.1021/nl1034573

Semiconductor Nanowires for Energy Conversion
journal, January 2010

  • Hochbaum, Allon I.; Yang, Peidong
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900075v

Semiconductor Nanowire: What’s Next?
journal, May 2010

  • Yang, Peidong; Yan, Ruoxue; Fardy, Melissa
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl100665r

Solution−Liquid−Solid Growth of Semiconductor Nanowires
journal, September 2006

  • Wang, Fudong; Dong, Angang; Sun, Jianwei
  • Inorganic Chemistry, Vol. 45, Issue 19
  • DOI: 10.1021/ic060498r

General Synthesis of Compound Semiconductor Nanowires
journal, February 2000


Synthesis of gallium phosphide nanowires via sublimation method
journal, October 2002

  • Seo, Hee Won; Bae, Seung Yong; Park, Jeunghee
  • Chemical Communications, Issue 21
  • DOI: 10.1039/B207995J

Synergetic nanowire growth
journal, September 2007

  • Borgström, Magnus T.; Immink, George; Ketelaars, Bas
  • Nature Nanotechnology, Vol. 2, Issue 9
  • DOI: 10.1038/nnano.2007.263

Synthesis of high-purity GaP nanowires using a vapor deposition method
journal, January 2003


Vapor-Phase Synthesis of Gallium Phosphide Nanowires
journal, January 2009

  • Gu, Zhanjun; Paranthaman, M. Parans; Pan, Zhengwei
  • Crystal Growth & Design, Vol. 9, Issue 1
  • DOI: 10.1021/cg8008305

Ultra-large-scale syntheses of monodisperse nanocrystals
journal, November 2004

  • Park, Jongnam; An, Kwangjin; Hwang, Yosun
  • Nature Materials, Vol. 3, Issue 12
  • DOI: 10.1038/nmat1251

Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction
journal, October 2003

  • Li, J. Jack; Wang, Y. Andrew; Guo, Wenzhuo
  • Journal of the American Chemical Society, Vol. 125, Issue 41, p. 12567-12575
  • DOI: 10.1021/ja0363563

Large-Scale Synthesis of TiO 2 Nanorods via Nonhydrolytic Sol−Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. c oli
journal, August 2005

  • Joo, Jin; Kwon, Soon Gu; Yu, Taekyung
  • The Journal of Physical Chemistry B, Vol. 109, Issue 32
  • DOI: 10.1021/jp052458z

Colloidal nanocrystal synthesis and the organic–inorganic interface
journal, September 2005

  • Yin, Yadong; Alivisatos, A. Paul
  • Nature, Vol. 437, Issue 7059, p. 664-670
  • DOI: 10.1038/nature04165

Aqueous-Solution Growth of GaP and InP Nanowires: A General Route to Phosphide, Oxide, Sulfide, and Tungstate Nanowires
journal, February 2004

  • Xiong, Yujie; Xie, Yi; Li, Zhengquan
  • Chemistry - A European Journal, Vol. 10, Issue 3
  • DOI: 10.1002/chem.200305569

The fabrication of MP (M = In and Ga) nanowires by a new Ullmann reaction
journal, June 2004


Bismuth Nanocrystal-Seeded III-V Semiconductor Nanowire Synthesis
journal, September 2005

  • Fanfair, Dayne D.; Korgel, Brian A.
  • Crystal Growth & Design, Vol. 5, Issue 5
  • DOI: 10.1021/cg0502587

Supercritical Fluid−Liquid−Solid Synthesis of Gallium Phosphide Nanowires
journal, January 2005

  • Davidson, Forrest M.; Wiacek, Robert; Korgel, Brian A.
  • Chemistry of Materials, Vol. 17, Issue 2
  • DOI: 10.1021/cm0486262

Soluble InP and GaP Nanowires: Self-Seeded, Solution-Liquid-Solid Synthesis and Electrical Properties
journal, April 2009

  • Liu, Zhaoping; Sun, Kai; Jian, Wen-Bin
  • Chemistry - A European Journal, Vol. 15, Issue 18
  • DOI: 10.1002/chem.200900190