skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured transparent conducting oxide electrochromic device

Abstract

The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

Inventors:
; ; ; ;
Issue Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1253350
Patent Number(s):
9,341,913
Application Number:
14/240,689
Assignee:
The Regents of the University of California (Oakland, CA)
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Aug 21
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Milliron, Delia, Tangirala, Ravisubhash, Llordes, Anna, Buonsanti, Raffaella, and Garcia, Guillermo. Nanostructured transparent conducting oxide electrochromic device. United States: N. p., 2016. Web.
Milliron, Delia, Tangirala, Ravisubhash, Llordes, Anna, Buonsanti, Raffaella, & Garcia, Guillermo. Nanostructured transparent conducting oxide electrochromic device. United States.
Milliron, Delia, Tangirala, Ravisubhash, Llordes, Anna, Buonsanti, Raffaella, and Garcia, Guillermo. Tue . "Nanostructured transparent conducting oxide electrochromic device". United States. https://www.osti.gov/servlets/purl/1253350.
@article{osti_1253350,
title = {Nanostructured transparent conducting oxide electrochromic device},
author = {Milliron, Delia and Tangirala, Ravisubhash and Llordes, Anna and Buonsanti, Raffaella and Garcia, Guillermo},
abstractNote = {The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {5}
}

Patent:

Save / Share:

Works referenced in this record:

Spectroelectrochemical Analysis of the Electrochromism of Antimony-Doped Nanoparticulate Tin−Dioxide Electrodes
journal, October 2002

  • Pflughoefft, Malte; Weller, Horst
  • The Journal of Physical Chemistry B, Vol. 106, Issue 41
  • DOI: 10.1021/jp0256793

Preparation and Optical Properties of Colloidal, Monodisperse, and Highly Crystalline ITO Nanoparticles
journal, April 2008

  • Choi, Sang-Il; Nam, Ki Min; Park, Bo Keun
  • Chemistry of Materials, Vol. 20, Issue 8
  • DOI: 10.1021/cm703706m

Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals
journal, October 2011

  • Garcia, Guillermo; Buonsanti, Raffaella; Runnerstrom, Evan L.
  • Nano Letters, Vol. 11, Issue 10, p. 4415-4420
  • DOI: 10.1021/nl202597n

Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods
journal, October 1999

  • Link, Stephan; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 40
  • DOI: 10.1021/jp9917648

Nanoantenna-enhanced gas sensing in a single tailored nanofocus
journal, May 2011

  • Liu, Na; Tang, Ming L.; Hentschel, Mario
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3029

Nanoplasmonic Probes of Catalytic Reactions
journal, October 2009


Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles
journal, August 1997


Plasmonics for improved photovoltaic devices
journal, February 2010

  • Atwater, Harry A.; Polman, Albert
  • Nature Materials, Vol. 9, Issue 3, p. 205-213
  • DOI: 10.1038/nmat2629

Synthesis of a Nonagglomerated Indium Tin Oxide Nanoparticle Dispersion
journal, September 2008

  • Gilstrap, Richard A.; Capozzi, Charles J.; Carson, Cantwell G.
  • Advanced Materials, Vol. 20, Issue 21, p. 4163-4166
  • DOI: 10.1002/adma.200702556

Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region
journal, December 2009

  • Kanehara, Masayuki; Koike, Hayato; Yoshinaga, Taizo
  • Journal of the American Chemical Society, Vol. 131, Issue 49
  • DOI: 10.1021/ja9064415

Localized surface plasmon resonances arising from free carriers in doped quantum dots
journal, April 2011

  • Luther, Joseph M.; Jain, Prashant K.; Ewers, Trevor
  • Nature Materials, Vol. 10, Issue 5, p. 361-366
  • DOI: 10.1038/nmat3004

Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu 2– x Se Nanocrystals
journal, July 2011

  • Dorfs, Dirk; Härtling, Thomas; Miszta, Karol
  • Journal of the American Chemical Society, Vol. 133, Issue 29
  • DOI: 10.1021/ja2016284

Electrochromic Nanocrystal Quantum Dots
journal, March 2001


Fast Voltammetric and Electrochromic Response of Semiconductor Nanocrystal Thin Films
journal, July 2003

  • Guyot-Sionnest, Philippe; Wang, Congjun
  • The Journal of Physical Chemistry B, Vol. 107, Issue 30
  • DOI: 10.1021/jp0275084

Spectroelectrochemistry of Colloidal Silver
journal, March 1997

  • Ung, Thearith; Giersig, Michael; Dunstan, David
  • Langmuir, Vol. 13, Issue 6
  • DOI: 10.1021/la960863z

Electrochemical Charging of Single Gold Nanorods
journal, October 2009

  • Novo, Carolina; Funston, Alison M.; Gooding, Ann K.
  • Journal of the American Chemical Society, Vol. 131, Issue 41
  • DOI: 10.1021/ja905216h

Low-Loss Plasmonic Metamaterials
journal, January 2011


Donor Compensation and Carrier-Transport Mechanisms in Tin-doped In 2 O 3 Films Studied by Means of Conversion Electron 119 Sn Mössbauer Spectroscopy and Hall Effect Measurements
journal, July 2000

  • Yamada, Naoomi; Yasui, Itaru; Shigesato, Yuzo
  • Japanese Journal of Applied Physics, Vol. 39, Issue Part 1, No. 7A
  • DOI: 10.1143/JJAP.39.4158

p-Type PbSe and PbS Quantum Dot Solids Prepared with Short-Chain Acids and Diacids
journal, March 2010

  • Zarghami, Mohammad H.; Liu, Yao; Gibbs, Markelle
  • ACS Nano, Vol. 4, Issue 4
  • DOI: 10.1021/nn100339b

Indium tin oxide films made from nanoparticles: models for the optical and electrical properties
journal, December 2003


Modeling of optical and electrical properties of In2O3:Sn coatings made by various techniques
journal, April 2006


Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications
journal, November 2007

  • Ghosh, Sujit Kumar; Pal, Tarasankar
  • Chemical Reviews, Vol. 107, Issue 11
  • DOI: 10.1021/cr0680282

Plasmons in Strongly Coupled Metallic Nanostructures
journal, June 2011

  • Halas, Naomi J.; Lal, Surbhi; Chang, Wei-Shun
  • Chemical Reviews, Vol. 111, Issue 6
  • DOI: 10.1021/cr200061k

Electrochromism of Highly Doped Nanocrystalline SnO 2 :Sb
journal, October 2000

  • zum Felde, U.; Haase, M.; Weller, H.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 40
  • DOI: 10.1021/jp0010031

Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies
journal, June 2010

  • Feigenbaum, Eyal; Diest, Kenneth; Atwater, Harry A.
  • Nano Letters, Vol. 10, Issue 6, p. 2111-2116
  • DOI: 10.1021/nl1006307

Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review
journal, February 2010

  • Baetens, Ruben; Jelle, Bjørn Petter; Gustavsen, Arild
  • Solar Energy Materials and Solar Cells, Vol. 94, Issue 2, p. 87-105
  • DOI: 10.1016/j.solmat.2009.08.021

Solid-State Nanocomposite Electrochromic Pseudocapacitors
journal, January 2005

  • Lee, Se-Hee; Tracy, C. Edwin; Yan, Yanfa
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 4
  • DOI: 10.1149/1.1861050

The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis
journal, October 1997

  • O’Leary, Stephen K.; Johnson, S. R.; Lim, P. K.
  • Journal of Applied Physics, Vol. 82, Issue 7
  • DOI: 10.1063/1.365643

Dielectric modelling of optical spectra of thin In 2 O 3 : Sn films
journal, April 2002


Evaporated Sn‐doped In 2 O 3 films: Basic optical properties and applications to energy‐efficient windows
journal, December 1986

  • Hamberg, I.; Granqvist, C. G.
  • Journal of Applied Physics, Vol. 60, Issue 11
  • DOI: 10.1063/1.337534

Carrier scattering and transport in semiconductors treated by the energy-loss method
journal, August 1986