Global to push GA events into
skip to main content

Title: Great circle solution to polarization-based quantum communication (QC) in optical fiber

Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.
; ; ;
Issue Date:
OSTI Identifier:
Patent Number(s):
Application Number:
Contract Number:
Resource Relation:
Patent File Date: 2012 Aug 31
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States

Works referenced in this record:

Quantum cryptographic network based on quantum memories
journal, October 1996

Quantum Key Distribution Based on Multi-qubit Hadamard Matrices
conference, September 2008

Free-space quantum-key distribution
journal, April 1998
  • Buttler, W. T.; Hughes, R. J.; Kwiat, P. G.
  • Physical Review A, Vol. 57, Issue 4, p. 2379-2382
  • DOI: 10.1103/PhysRevA.57.2379

Practical Free-Space Quantum Key Distribution over 1 km
journal, October 1998
  • Buttler, W. T.; Hughes, R. J.; Kwiat, P. G.
  • Physical Review Letters, Vol. 81, Issue 15, p. 3283-3286
  • DOI: 10.1103/PhysRevLett.81.3283

Secure Identification and QKD in the Bounded-Quantum-Storage Model
book, January 2007

Low cost and compact quantum key distribution
journal, October 2006
  • Duligall, J. L.; Godfrey, M. S.; Harrison, K. A.
  • New Journal of Physics, Vol. 8, Issue 10, p. 249-249
  • DOI: 10.1088/1367-2630/8/10/249

Quantum secret sharing
journal, March 1999
  • Hillery, Mark; Bužek, Vladimír; Berthiaume, André
  • Physical Review A, Vol. 59, Issue 3, p. 1829-1834
  • DOI: 10.1103/PhysRevA.59.1829

Free-space quantum key distribution in daylight
journal, February 2000
  • Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.
  • Journal of Modern Optics, Vol. 47, Issue 2-3, p. 549-562
  • DOI: 10.1080/09500340008244059

Practical free-space quantum key distribution over 10 km in daylight and at night
journal, January 2002
  • Hughes, Richard J.; Nordholt, Jane E.; Derkacs, Derek
  • New Journal of Physics, Vol. 4, p. 43-43
  • DOI: 10.1088/1367-2630/4/1/343

Quantum Cryptography over Underground Optical Fibers
book, January 1996
  • Hughes, R. J.; Luther, G. G.; Morgan, G. L.
  • Advances in Cryptology — CRYPTO ’96, p. 329-342
  • DOI: 10.1007/3-540-68697-5_25

Secure communications using quantum cryptography
conference, July 1997
  • Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.
  • Photonic Quantum Computing Proceedings, Vol. 3076
  • DOI: 10.1117/12.277644

Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA
journal, October 2005
  • Menendez, R. C.; Toliver, P.; Galli, S.
  • Journal of Lightwave Technology, Vol. 23, Issue 10, p. 3219-3231
  • DOI: 10.1109/JLT.2005.856285

Custom hardware to eliminate bottlenecks in QKD throughput performance
conference, September 2007
  • Mink, Alan; Arakawa, Yasuhiko; Sasaki, Masahide
  • Quantum Communications Realized, Vol. 6780
  • DOI: 10.1117/12.733136

Present and future free-space quantum key distribution
conference, April 2002
  • Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.
  • Free-Space Laser Communication Technologies XIV, Vol. 4635
  • DOI: 10.1117/12.464085

The SECOQC quantum key distribution network in Vienna
journal, July 2009

Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments
journal, April 2009

Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber
journal, January 2007
  • Rosenberg, Danna; Harrington, Jim W.; Rice, Patrick R.
  • Physical Review Letters, Vol. 98, Issue 1, Article No. 010503
  • DOI: 10.1103/PhysRevLett.98.010503

Practical long-distance quantum key distribution system using decoy levels
journal, April 2009
  • Rosenberg, D.; Peterson, C. G.; Harrington, J. W.
  • New Journal of Physics, Vol. 11, Issue 4, Article No. 045009
  • DOI: 10.1088/1367-2630/11/4/045009

Quantum key distribution at telecom wavelengths with noise-free detectors
journal, January 2006
  • Rosenberg, Danna; Nam, Sae Woo; Hiskett, Philip A.
  • Applied Physics Letters, Vol. 88, Issue 2, Article No. 021108
  • DOI: 10.1063/1.2164307

Progress toward quantum communications networks: opportunities and challenges
conference, February 2007
  • Runser, Robert J.; Chapuran, Thomas; Toliver, Paul
  • Optoelectronic Integrated Circuits IX, Vol. 6476
  • DOI: 10.1117/12.708669

New Efficient Three-Party Quantum Key Distribution Protocols
journal, January 2009
  • Shih, Han-Cheng; Lee, Kuo-Chang; Hwang, Tzonelih
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, Issue 6, p. 1602-1606
  • DOI: 10.1109/JSTQE.2009.2019617

Experimental investigation of quantum key distribution through transparent optical switch elements
journal, November 2003
  • Toliver, P.; Runser, R. J.; Chapuran, T. E.
  • IEEE Photonics Technology Letters, Vol. 15, Issue 11, p. 1669-1671
  • DOI: 10.1109/LPT.2003.818687

New hash functions and their use in authentication and set equality
journal, June 1981
  • Wegman, Mark N.; Carter, J. Lawrence
  • Journal of Computer and System Sciences, Vol. 22, Issue 3, p. 265-279
  • DOI: 10.1016/0022-0000(81)90033-7