skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Consolidated bioprocessing method using thermophilic microorganisms

Abstract

The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

Inventors:
Issue Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1237278
Patent Number(s):
9,249,442
Application Number:
13/762,619
Assignee:
UT-BATTELLE, LLC
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Feb 08
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Mielenz, Jonathan Richard. Consolidated bioprocessing method using thermophilic microorganisms. United States: N. p., 2016. Web.
Mielenz, Jonathan Richard. Consolidated bioprocessing method using thermophilic microorganisms. United States.
Mielenz, Jonathan Richard. Tue . "Consolidated bioprocessing method using thermophilic microorganisms". United States. https://www.osti.gov/servlets/purl/1237278.
@article{osti_1237278,
title = {Consolidated bioprocessing method using thermophilic microorganisms},
author = {Mielenz, Jonathan Richard},
abstractNote = {The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {2}
}

Patent:

Save / Share:

Works referenced in this record:

Ethanol from Cellulosic Biomass [and Discussion]
journal, January 1983

  • Wang, D. I. C.; Avgerinos, G. C.; Biocic, I.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 300, Issue 1100
  • DOI: 10.1098/rstb.1983.0008

Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives
journal, July 2011


Thermophilic ethanologenesis: future prospects for second-generation bioethanol production
journal, July 2009


Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost
journal, February 2011

  • Sizova, M. V.; Izquierdo, J. A.; Panikov, N. S.
  • Applied and Environmental Microbiology, Vol. 77, Issue 7
  • DOI: 10.1128/AEM.01219-10

Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield
journal, September 2008

  • Shaw, A. J.; Podkaminer, K. K.; Desai, S. G.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 37, p. 13769-13774
  • DOI: 10.1073/pnas.0801266105

Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria
journal, February 1999


Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

Polysaccharide Degradation and Synthesis by Extremely Thermophilic Anaerobes
journal, March 2008

  • VanFossen, Amy L.; Lewis, Derrick L.; Nichols, Jason D.
  • Annals of the New York Academy of Sciences, Vol. 1125, Issue 1, p. 322-337
  • DOI: 10.1196/annals.1419.017

Regulation of Cellulase Synthesis in Batch and Continuous Cultures of Clostridium thermocellum
journal, December 2004


Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation
journal, January 2011

  • Raman, Babu; McKeown, Catherine K; Rodriguez, Miguel
  • BMC Microbiology, Vol. 11, Issue 1, Article No. 134
  • DOI: 10.1186/1471-2180-11-134

Extremely thermophilic microorganisms for biomass conversion status and prospects
journal, June 2008

  • Blumer-Schuette, Sara E.; Kataeva, Irina; Westpheling, Janet
  • Current Opinion in Biotechnology, Vol. 19, Issue 3, p. 210-217
  • DOI: 10.1016/j.copbio.2008.04.007

Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus Caldicellulosiruptor
journal, October 2010

  • Blumer-Schuette, S. E.; Lewis, D. L.; Kelly, R. M.
  • Applied and Environmental Microbiology, Vol. 76, Issue 24, p. 8084-8092
  • DOI: 10.1128/AEM.01400-10

Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park
journal, December 2009

  • Hamilton-Brehm, S. D.; Mosher, J. J.; Vishnivetskaya, T.
  • Applied and Environmental Microbiology, Vol. 76, Issue 4, p. 1014-1020
  • DOI: 10.1128/AEM.01903-09

A defined growth medium with very low background carbon for culturing Clostridium thermocellum
journal, February 2012

  • Holwerda, Evert K.; Hirst, Kyle D.; Lynd, Lee R.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 39, Issue 6
  • DOI: 10.1007/s10295-012-1091-3

Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria
journal, November 2001

  • Ozkan, M.; Desai, Sg; Zhang, Y.
  • Journal of Industrial Microbiology and Biotechnology, Vol. 27, Issue 5
  • DOI: 10.1038/sj.jim.7000082

Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives
journal, March 2008

  • Kumar, Raj; Singh, Sompal; Singh, Om V.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 35, Issue 5
  • DOI: 10.1007/s10295-008-0327-8