DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method for selectively preparing 5-hydroxymethylfurfual (HMF) from biomass in polar aprotic solvents

Abstract

A method to produce 5-hydroxymethylfurfural (HMF) is described in which a reactant including cellulose, lignocellulose, or a combination thereof, in a reaction mixture of a polar, aprotic solvent and an acid is reacted for a time, at a temperature, and at a hydrogen ion concentration wherein at least a portion of the cellulose or lignocellulose present in the reactant is converted to HMF. The reaction mixture is initially substantially devoid of water. As the reaction proceeds, dehydration of intermediates causes the water concentration in the reaction mixture to rise to no more than about 0.2 wt % water.

Inventors:
; ;
Issue Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1236566
Patent Number(s):
9242952
Application Number:
14/229,481
Assignee:
Wisconsin Alumni Research Foundation
Patent Classifications (CPCs):
C - CHEMISTRY C07 - ORGANIC CHEMISTRY C07D - HETEROCYCLIC COMPOUNDS
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Mar 28
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Dumesic, James A., Huber, George W., and Weingarten, Ronen. Method for selectively preparing 5-hydroxymethylfurfual (HMF) from biomass in polar aprotic solvents. United States: N. p., 2016. Web.
Dumesic, James A., Huber, George W., & Weingarten, Ronen. Method for selectively preparing 5-hydroxymethylfurfual (HMF) from biomass in polar aprotic solvents. United States.
Dumesic, James A., Huber, George W., and Weingarten, Ronen. Tue . "Method for selectively preparing 5-hydroxymethylfurfual (HMF) from biomass in polar aprotic solvents". United States. https://www.osti.gov/servlets/purl/1236566.
@article{osti_1236566,
title = {Method for selectively preparing 5-hydroxymethylfurfual (HMF) from biomass in polar aprotic solvents},
author = {Dumesic, James A. and Huber, George W. and Weingarten, Ronen},
abstractNote = {A method to produce 5-hydroxymethylfurfural (HMF) is described in which a reactant including cellulose, lignocellulose, or a combination thereof, in a reaction mixture of a polar, aprotic solvent and an acid is reacted for a time, at a temperature, and at a hydrogen ion concentration wherein at least a portion of the cellulose or lignocellulose present in the reactant is converted to HMF. The reaction mixture is initially substantially devoid of water. As the reaction proceeds, dehydration of intermediates causes the water concentration in the reaction mixture to rise to no more than about 0.2 wt % water.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {1}
}

Works referenced in this record:

Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural
journal, June 2007


Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
journal, January 2013


Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone
journal, February 2003


Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals
journal, February 2009


Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels
journal, February 2010


THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass
journal, January 2013


Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides
journal, January 2007


5-Hydroxymethylfurfural production from sugars and cellulose in acid- and base-catalyzed conditions under hot compressed water
journal, November 2012


A Brief Summary of the Synthesis of Polyester Building-Block Chemicals and Biofuels from 5-Hydroxymethylfurfural
journal, February 2012


Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents
journal, January 2013


Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone
journal, December 2012


A kinetic model for production of glucose by hydrolysis of levoglucosan and cellobiosan from pyrolysis oil
journal, November 2007


Thermochemical conversion of cellulose in polar solvent (sulfolane) into levoglucosan and other low molecular-weight substances
journal, December 2003


Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide
journal, January 2007


High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid
journal, February 2013


Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions
journal, September 2010


Kinetics and Mechanism of Cellulose Pyrolysis
journal, October 2009


Nonenzymatic Sugar Production from Biomass Using Biomass-Derived  -Valerolactone
journal, January 2014


Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts
journal, July 2010


Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process
journal, June 2011


Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids
journal, October 2008


Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes
journal, December 2009


Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose
journal, June 2006


Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
journal, June 2007


Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts
journal, January 2009


Conversion of biomass to sugars via ionic liquid hydrolysis: process synthesis and economic evaluation
journal, May 2012


Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields
journal, March 2011


Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical
journal, June 2009


Ionic Liquids in Biomass Processing
book, January 2009


Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s
journal, January 2011


Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources
journal, February 2013


Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media
journal, January 2012


Selective Production of Aromatics from Alkylfurans over Solid Acid Catalysts
journal, January 2013


Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems
journal, January 2012


RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone
journal, May 2012


Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p -Xylene
journal, April 2012


Hydrothermal Conversion of Cellulose to 5-Hydroxymethyl Furfural
journal, March 2011


Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural—A Promising Biomass-Derived Building Block
journal, February 2011


Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural
journal, June 2007