skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isotope specific arbitrary material sorter

Abstract

A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

Inventors:
Issue Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1228378
Patent Number(s):
9,205,463
Application Number:
14/238,158
Assignee:
Lawrence Livermore National Security, LLC
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Aug 22
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPE AND RADIATION SOURCES; 42 ENGINEERING

Citation Formats

Barty, Christopher P.J. Isotope specific arbitrary material sorter. United States: N. p., 2015. Web.
Barty, Christopher P.J. Isotope specific arbitrary material sorter. United States.
Barty, Christopher P.J. Tue . "Isotope specific arbitrary material sorter". United States. https://www.osti.gov/servlets/purl/1228378.
@article{osti_1228378,
title = {Isotope specific arbitrary material sorter},
author = {Barty, Christopher P.J.},
abstractNote = {A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {12}
}

Patent:

Save / Share:

Works referenced in this record:

Inverse compton scattering gamma ray source
journal, September 2009

  • Boucher, S.; Frigola, P.; Murokh, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 608, Issue 1, p. S54-S56
  • DOI: 10.1016/j.nima.2009.05.035

Design and operation of a tunable MeV-level Compton-scattering-based ╬│ -ray source
journal, July 2010

  • Gibson, D. J.; Albert, F.; Anderson, S. G.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 13, Issue 7, Article No. 070703
  • DOI: 10.1103/PhysRevSTAB.13.070703

Transmission-based detection of nuclides with nuclear resonance fluorescence using a quasimonoenergetic photon source
journal, October 2009

  • Hagmann, C. A.; Hall, J. M.; Johnson, M. S.
  • Journal of Applied Physics, Vol. 106, Issue 8, Article No. 084901
  • DOI: 10.1063/1.3238328

High-Power Picosecond Pulse Recirculation for Inverse Compton Scattering
journal, November 2008


High-power picosecond laser pulse recirculation
journal, January 2010

  • Shverdin, M. Y.; Jovanovic, I.; Semenov, V. A.
  • Optics Letters, Vol. 35, Issue 13, p. 2224-2226
  • DOI: 10.1364/OL.35.002224