skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microfluidic devices and methods including porous polymer monoliths

Abstract

Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

Inventors:
; ; ; ;
Issue Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1227358
Patent Number(s):
9,201,069
Application Number:
14/189,949
Assignee:
Sandia Corporation
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Feb 25
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Hatch, Anson V., Sommer, Gregory j., Singh, Anup K., Wang, Ying-Chih, and Abhyankar, Vinay. Microfluidic devices and methods including porous polymer monoliths. United States: N. p., 2015. Web.
Hatch, Anson V., Sommer, Gregory j., Singh, Anup K., Wang, Ying-Chih, & Abhyankar, Vinay. Microfluidic devices and methods including porous polymer monoliths. United States.
Hatch, Anson V., Sommer, Gregory j., Singh, Anup K., Wang, Ying-Chih, and Abhyankar, Vinay. Tue . "Microfluidic devices and methods including porous polymer monoliths". United States. https://www.osti.gov/servlets/purl/1227358.
@article{osti_1227358,
title = {Microfluidic devices and methods including porous polymer monoliths},
author = {Hatch, Anson V. and Sommer, Gregory j. and Singh, Anup K. and Wang, Ying-Chih and Abhyankar, Vinay},
abstractNote = {Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {12}
}

Patent:

Save / Share:

Works referenced in this record:

Iniferter concept and living radical polymerization
journal, June 2000


Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization: Monolithic Polymers
journal, January 2002

  • Yu, Cong; Xu, Mingcheng; Svec, Frantisek
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 40, Issue 6
  • DOI: 10.1002/pola.10155

Conduct-as-Cast Polymer Monoliths as Separation Media for Capillary Electrochromatography
journal, March 2001

  • Ngola, Sarah M.; Fintschenko, Yolanda; Choi, Wen-Yee
  • Analytical Chemistry, Vol. 73, Issue 5
  • DOI: 10.1021/ac000839x

Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices
journal, November 2003

  • Stachowiak, Timothy B.; Rohr, Thomas; Hilder, Emily F.
  • ELECTROPHORESIS, Vol. 24, Issue 21
  • DOI: 10.1002/elps.200305536

Photografting and the Control of Surface Chemistry in Three-Dimensional Porous Polymer Monoliths
journal, March 2003

  • Rohr, Thomas; Hilder, Emily F.; Donovan, John J.
  • Macromolecules, Vol. 36, Issue 5
  • DOI: 10.1021/ma021351w

Microchip Dialysis of Proteins Using in Situ Photopatterned Nanoporous Polymer Membranes
journal, April 2004

  • Song, Simon; Singh, Anup K.; Shepodd, Timothy J.
  • Analytical Chemistry, Vol. 76, Issue 8
  • DOI: 10.1021/ac035290r

Immobilized microfluidic enzymatic reactors
journal, November 2004


In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching
journal, January 2005

  • Simms, Helen M.; Brotherton, Christopher M.; Good, Brian T.
  • Lab on a Chip, Vol. 5, Issue 2
  • DOI: 10.1039/B412589D

Surface Grafted Antibodies:  Controlled Architecture Permits Enhanced Antigen Detection
journal, November 2005

  • Sebra, Robert P.; Masters, Kristyn S.; Bowman, Christopher N.
  • Langmuir, Vol. 21, Issue 24
  • DOI: 10.1021/la052101m

Patternable Protein Resistant Surfaces for Multifunctional Microfluidic Devices via Surface Hydrophilization of Porous Polymer Monoliths Using Photografting
journal, December 2006

  • Stachowiak, Timothy B.; Svec, Frantisek; Fréchet, Jean M. J.
  • Chemistry of Materials, Vol. 18, Issue 25
  • DOI: 10.1021/cm0617034

Optimal Design of Microarray Immunoassays to Compensate for Kinetic Limitations: Theory and Experiment
journal, May 2006

  • Kusnezow, Wlad; Syagailo, Yana V.; Rüffer, Sven
  • Molecular & Cellular Proteomics, Vol. 5, Issue 9
  • DOI: 10.1074/mcp.T500035-MCP200

Detection of Antigens in Biologically Complex Fluids with Photografted Whole Antibodies
journal, May 2006

  • Sebra, Robert P.; Masters, Kristyn S.; Cheung, Charles Y.
  • Analytical Chemistry, Vol. 78, Issue 9
  • DOI: 10.1021/ac052246y

Bio-particle separation using microfluidic porous plug for environmental monitoring
journal, January 2007


Photopatterning Enzymes on Polymer Monoliths in Microfluidic Devices for Steady-State Kinetic Analysis and Spatially Separated Multi-Enzyme Reactions
journal, September 2007

  • Logan, Timothy C.; Clark, Douglas S.; Stachowiak, Timothy B.
  • Analytical Chemistry, Vol. 79, Issue 17
  • DOI: 10.1021/ac070705k

Controlled photopolymerization reactions: The reactivity of new photoiniferters
journal, January 2007

  • Lalevée, J.; El-Roz, M.; Allonas, X.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, Issue 12
  • DOI: 10.1002/pola.22005