skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication of small-scale structures with non-planar features

Abstract

The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

Inventors:
;
Issue Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1226228
Patent Number(s):
9,190,736
Application Number:
13/324,052
Assignee:
Sandia Corporation
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2011 Dec 13
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Burckel, David B., and Ten Eyck, Gregory A. Fabrication of small-scale structures with non-planar features. United States: N. p., 2015. Web.
Burckel, David B., & Ten Eyck, Gregory A. Fabrication of small-scale structures with non-planar features. United States.
Burckel, David B., and Ten Eyck, Gregory A. Thu . "Fabrication of small-scale structures with non-planar features". United States. https://www.osti.gov/servlets/purl/1226228.
@article{osti_1226228,
title = {Fabrication of small-scale structures with non-planar features},
author = {Burckel, David B. and Ten Eyck, Gregory A.},
abstractNote = {The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {11}
}

Patent:

Save / Share:

Works referenced in this record:

Optical Antennas
journal, January 2009

  • Bharadwaj, Palash; Deutsch, Bradley; Novotny, Lukas
  • Advances in Optics and Photonics, Vol. 1, Issue 3
  • DOI: 10.1364/AOP.1.000438

Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography
journal, June 2010

  • Burckel, D. Bruce; Wendt, Joel R.; Ten Eyck, Gregory A.
  • Advanced Materials, Vol. 22, Issue 29, p. 3171-3175
  • DOI: 10.1002/adma.200904153

Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers
journal, October 2010

  • Burckel, D. Bruce; Wendt, Joel R.; Ten Eyck, Gregory A.
  • Advanced Materials, Vol. 22, Issue 44, p. 5053-5057
  • DOI: 10.1002/adma.201002429

Photodetection with Active Optical Antennas
journal, May 2011

  • Knight, M. W.; Sobhani, H.; Nordlander, P.
  • Science, Vol. 332, Issue 6030, p. 702-704
  • DOI: 10.1126/science.1203056

Fabrication of Hollow Metal “Nanocaps” and Their Red-Shifted Optical Absorption Spectra
journal, May 2005

  • Liu, J.; Maaroof, A. I.; Wieczorek, L.
  • Advanced Materials, Vol. 17, Issue 10, p. 1276-1281
  • DOI: 10.1002/adma.200500035

Light-Bending Nanoparticles
journal, March 2009

  • Mirin, Nikolay A.; Halas, Naomi J.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900208z

Mapping the Plasmon Resonances of Metallic Nanoantennas
journal, February 2008

  • Bryant, Garnett W.; García de Abajo, F. Javier; Aizpurua, Javier
  • Nano Letters, Vol. 8, Issue 2
  • DOI: 10.1021/nl073042v

Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems
journal, July 2006

  • Takano, Nao; Doeswijk, Lianne M.; Boogaart, Marc A. F. van den
  • Journal of Micromechanics and Microengineering, Vol. 16, Issue 8
  • DOI: 10.1088/0960-1317/16/8/023

Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode
journal, February 2007

  • Gross, L.; Schlittler, R. R.; Meyer, G.
  • Applied Physics Letters, Vol. 90, Issue 9
  • DOI: 10.1063/1.2710202

High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy
journal, July 2010

  • Aksu, Serap; Yanik, Ahmet A.; Adato, Ronen
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl101042a

A simultaneous vertical and horizontal self-patterning method for deep three-dimensional microstructures
journal, June 2007

  • Hirose, Kenichiro; Shiraishi, Fumitaka; Mita, Yoshio
  • Journal of Micromechanics and Microengineering, Vol. 17, Issue 7
  • DOI: 10.1088/0960-1317/17/7/S02

All-photoplastic microstencil with self-alignment for multiple layer shadow-mask patterning
journal, October 2003

  • Kim, Gyuman; Kim, Beomjoon; Brugger, Jürgen
  • Sensors and Actuators A: Physical, Vol. 107, Issue 2, p. 132-136
  • DOI: 10.1016/S0924-4247(03)00298-X

Three-dimensional IC trends
journal, January 1986


Monolithic 3D-ICs with single grain Si thin film transistors
journal, May 2012

  • Ishihara, R.; Derakhshandeh, J.; Tajari Mofrad, M. R.
  • Solid-State Electronics, Vol. 71, p. 80-87
  • DOI: 10.1016/j.sse.2011.10.025

Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies
journal, November 2011

  • Lai, Ming-Fang; Li, Shih-Wei; Shih, Jian-Yu
  • Microelectronic Engineering, Vol. 88, Issue 11, p. 3282-3286
  • DOI: 10.1016/j.mee.2011.05.036