Global to push GA events into
skip to main content

Title: Image fusion using sparse overcomplete feature dictionaries

Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.
Inventors:
; ; ; ;
Issue Date:
OSTI Identifier:
1222629
Assignee:
Los Alamos National Security, LLC (Los Alamos, NM) LANL
Patent Number(s):
9,152,881
Application Number:
14/026,295
Contract Number:
AC52-06NA25396
Resource Relation:
Patent File Date: 2013 Sep 13
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Other works cited in this record:

Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization
journal, February 2003
  • Donoho, D. L.; Elad, M.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 5, p. 2197-2202
  • DOI: 10.1073/pnas.0437847100

Spatial frequency selectivity of cells in macaque visual cortex
journal, January 1982
  • De Valois, Russell L.; Albrecht, Duane G.; Thorell, Lisa G.
  • Vision Research, Vol. 22, Issue 5, p. 545-559
  • DOI: 10.1016/0042-6989(82)90113-4

The orientation and direction selectivity of cells in macaque visual cortex
journal, January 1982

A feedforward architecture accounts for rapid categorization
journal, April 2007
  • Serre, T.; Oliva, A.; Poggio, T.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 15, p. 6424-6429
  • DOI: 10.1073/pnas.0700622104

Similar records in DOepatents and OSTI.GOV collections: