Global to push GA events into
skip to main content

Title: Porous silicon based anode material formed using metal reduction

A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.
; ; ; ; ; ;
Issue Date:
OSTI Identifier:
Envia Systems, Inc. (Newark, CA) ARPA-E
Patent Number(s):
Application Number:
Contract Number:
Resource Relation:
Patent File Date: 2012 Jan 19
Research Org:
Envia Systems, Inc., Newark, CA (United States)
Sponsoring Org:
Country of Publication:
United States

Works referenced in this record:

High-performance lithium battery anodes using silicon nanowires
journal, December 2007
  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

High Capacity, Temperature-Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries
journal, January 1999
  • Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young‐Il
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 3, p. 107-110
  • DOI: 10.1149/1.1390750

Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
journal, January 2010

A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment
journal, August 2008

Enhancing the rate capability of high capacity xLi2MnO3 · (1−x)LiMO2 (M=Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment
journal, April 2009

Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries
journal, August 2005

Synthesis of spherical Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 as positive electrode material for lithium-ion battery
journal, February 2006

Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni[sub 1∕3]Co[sub 1∕3]Mn[sub 1∕3]]O[sub 2] Cathodes by Fluorine Substitution for Li-Ion Batteries
journal, July 2005
  • Kim, G.-H.; Kim, J.-H.; Myung, S.-T.
  • Journal of The Electrochemical Society, Vol. 152, Issue 9, p. A1707-A1713
  • DOI: 10.1149/1.1952747

High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method
journal, November 2006

Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating
journal, April 2009

Electrical transport in doped multiwalled carbon nanotubes
journal, April 2001

AlF3-Coating to Improve High Voltage Cycling Performance of Li[Ni1∕3]Co1∕3]Mn1∕3]O2 Cathode Materials for Lithium Secondary Batteries
journal, January 2007
  • Sun, Y.-K.; Cho, S.-W.; Lee, S.-W.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3, p. A168-A172
  • DOI: 10.1149/1.2422890

Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode
journal, May 2006

Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M=Mn, Ni, Co) for lithium batteries
journal, September 2006
  • Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.
  • Electrochemistry Communications, Vol. 8, Issue 9, p. 1531-1538
  • DOI: 10.1016/j.elecom.2006.06.030

Significant Improvement of Electrochemical Performance of AlF3-Coated Li[Ni0.8Co0.1Mn0.1]O2 Cathode Materials
journal, January 2007
  • Woo, S.-U.; Yoon, C. S.; Amine, K.
  • Journal of The Electrochemical Society, Vol. 154, Issue 11, p. A1005-A1009
  • DOI: 10.1149/1.2776160

Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries
journal, February 2007

Electrochemical behaviors of silicon based anode material
journal, August 2005

Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling
journal, January 1998
  • Wang, C. S.; Wu, G. T.; Zhang, X. B.
  • Journal of The Electrochemical Society, Vol. 145, Issue 8, p. 2751-2758
  • DOI: 10.1149/1.1838709

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
journal, June 2009
  • Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 26, p. 11390-11398
  • DOI: 10.1021/jp901594g