Global to push GA events into
skip to main content

Title: Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Inventors:
; ;
Issue Date:
OSTI Identifier:
1209480
Assignee:
Intelligent Energy Limited (Loughborough, GB) GFO
Patent Number(s):
9,102,528
Application Number:
13/761,452
Contract Number:
FG36-08GO88108
Resource Relation:
Patent File Date: 2013 Apr 08
Research Org:
Intelligent Energy Limited, Loughborough, Leicestershire (United Kingdom)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Other works cited in this record:

NMR studies of Na atoms in silicon clathrate compounds
journal, August 1996
  • Gryko, Jan; McMillan, Paul F.; Sankey, Otto F.
  • Physical Review B, Vol. 54, Issue 5, p. 3037-3039
  • DOI: 10.1103/PhysRevB.54.3037

NMR and X-ray Spectroscopy of Sodium−Silicon Clathrates
journal, May 2001
  • He, Jiliang; Klug, Dennis D.; Uehara, Kentaro
  • The Journal of Physical Chemistry B, Vol. 105, Issue 17, p. 3475-3485
  • DOI: 10.1021/jp010255e

A versatile low temperature synthetic route to Zintl phase precursors: Na4Si4, Na4Ge4 and K4Ge4 as examples
journal, January 2009
  • Ma, Xuchu; Xu, Fen; Atkins, Tonya M.
  • Dalton Transactions, Vol. 0, Issue 46, p. 10250-10255
  • DOI: 10.1039/B913320H

NMR Study of the Synthesis of Alkyl-Terminated Silicon Nanoparticles from the Reaction of SiCl4 with the Zintl Salt, NaSi
journal, March 2001
  • Mayeri, Daniel; Phillips, Brian L.; Augustine, Matthew P.
  • Chemistry of Materials, Vol. 13, Issue 3, p. 765-770
  • DOI: 10.1021/cm000418w

Geometric and electronic structures of silicon–sodium binary clusters. I. Ionization energy of SinNam
journal, August 1997
  • Kishi, Reiko; Iwata, Suehiro; Nakajima, Atsushi
  • The Journal of Chemical Physics, Vol. 107, Issue 8, p. 3056-3070
  • DOI: 10.1063/1.474661

Pseudopotential calculations on alkali silicide clusters with Si2 and tetrahedral Si4 backbones
journal, January 1988
  • Savin, A.; Vogel, K.; Preuss, H.
  • Journal of the American Chemical Society, Vol. 110, Issue 2, p. 373-375
  • DOI: 10.1021/ja00210a009

Similar records in DOepatents and OSTI.GOV collections: