Organic electronic devices with multiple solution-processed layers
Abstract
A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.
- Inventors:
- Issue Date:
- Research Org.:
- Univ. of Michigan, Ann Arbor, MI (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1207237
- Patent Number(s):
- 9099652
- Application Number:
- 14/473,995
- Assignee:
- The Regents of the University of Michigan (Ann Arbor, MI)
- Patent Classifications (CPCs):
-
H - ELECTRICITY H01 - BASIC ELECTRIC ELEMENTS H01L - SEMICONDUCTOR DEVICES
Y - NEW / CROSS SECTIONAL TECHNOLOGIES Y02 - TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE Y02E - REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- DOE Contract Number:
- SC0000957
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 2014 Aug 29
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Citation Formats
Forrest, Stephen R., Lassiter, Brian E., and Zimmerman, Jeramy D. Organic electronic devices with multiple solution-processed layers. United States: N. p., 2015.
Web.
Forrest, Stephen R., Lassiter, Brian E., & Zimmerman, Jeramy D. Organic electronic devices with multiple solution-processed layers. United States.
Forrest, Stephen R., Lassiter, Brian E., and Zimmerman, Jeramy D. Tue .
"Organic electronic devices with multiple solution-processed layers". United States. https://www.osti.gov/servlets/purl/1207237.
@article{osti_1207237,
title = {Organic electronic devices with multiple solution-processed layers},
author = {Forrest, Stephen R. and Lassiter, Brian E. and Zimmerman, Jeramy D.},
abstractNote = {A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {8}
}
Works referenced in this record:
Solution-processed organic photovoltaic cells based on a squaraine dye
journal, January 2012
- Chen, Guo; Sasabe, Hisahiro; Wang, Zhongqiang
- Physical Chemistry Chemical Physics, Vol. 14, Issue 42