DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pitch-based carbon foam heat sink with phase change material

Abstract

A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

Inventors:
;
Issue Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1174993
Patent Number(s):
6780505
Application Number:
09/489,640
Assignee:
UT-Battelle, LLC (Oak Ridge, TN)
Patent Classifications (CPCs):
B - PERFORMING OPERATIONS B32 - LAYERED PRODUCTS B32B - LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
C - CHEMISTRY C04 - CEMENTS C04B - LIME, MAGNESIA
DOE Contract Number:  
AC05-96OR22464
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Klett, James W., and Burchell, Timothy D. Pitch-based carbon foam heat sink with phase change material. United States: N. p., 2004. Web.
Klett, James W., & Burchell, Timothy D. Pitch-based carbon foam heat sink with phase change material. United States.
Klett, James W., and Burchell, Timothy D. Tue . "Pitch-based carbon foam heat sink with phase change material". United States. https://www.osti.gov/servlets/purl/1174993.
@article{osti_1174993,
title = {Pitch-based carbon foam heat sink with phase change material},
author = {Klett, James W. and Burchell, Timothy D.},
abstractNote = {A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2004},
month = {8}
}

Works referenced in this record:

Glass-like carbons
journal, June 1969


Novel Hybrid Composites Based on Carbon Foams
journal, January 1992


Full range product literature
journal, October 1998


Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites
journal, May 1996


Pitch-based processing of carbon-carbon composites
journal, January 1989


Vitreous carbon — A new form of carbon
journal, November 1967


The formation of graphitizing carbons from the liquid phase
journal, October 1965


Widealized Strut Geometries for Open-Celled Foams
journal, January 1992


Pitch and Mesophase Fibers
book, January 1990


High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties
journal, January 2000


Modelling the mechanical behavior of cellular materials
journal, March 1989


Pulse Method of Measuring Thermal Diffusivity at High Temperatures
journal, April 1963


Evaluation of naphthalene-derived mesophase pitches as a binder for carbon-carbon composites
journal, January 1993


Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel
journal, January 1998


Microcellular Foams Prepared From Demixed Polymer Solutions
journal, January 1990


Metallic foams: their production, properties and applications
journal, July 1983


Structural development in mesophase pitch based carbon fibers produced from naphthalene
journal, January 1997