DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method for high resolution magnetic resonance analysis using magic angle technique

Abstract

A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

Inventors:
;
Issue Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1174657
Patent Number(s):
6670811
Application Number:
10/094,455
Assignee:
Battelle Memorial Institute (Richland, WA)
Patent Classifications (CPCs):
G - PHYSICS G01 - MEASURING G01R - MEASURING ELECTRIC VARIABLES
DOE Contract Number:  
AC06-76RL01830
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Wind, Robert A., and Hu, Jian Zhi. Method for high resolution magnetic resonance analysis using magic angle technique. United States: N. p., 2003. Web.
Wind, Robert A., & Hu, Jian Zhi. Method for high resolution magnetic resonance analysis using magic angle technique. United States.
Wind, Robert A., and Hu, Jian Zhi. Tue . "Method for high resolution magnetic resonance analysis using magic angle technique". United States. https://www.osti.gov/servlets/purl/1174657.
@article{osti_1174657,
title = {Method for high resolution magnetic resonance analysis using magic angle technique},
author = {Wind, Robert A. and Hu, Jian Zhi},
abstractNote = {A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {12}
}

Works referenced in this record:

Two-Dimensional Sideband Separation in Magic-Angle-Spinning NMR
journal, July 1995


High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning
journal, October 1992


Fluorine-19 Solid-State NMR Magic-Angle-Turning Experiments Using Multiple-Pulse Homonuclear Decoupling
journal, June 1999


Magic-Angle-Turning Experiments for Measuring Chemical-Shift-Tensor Principal Values in Powdered Solids
journal, April 1995


Gradient, high-resolution, magic angle spinning1H nuclear magnetic resonance spectroscopy of intact cells
journal, March 1998


Nuclear magnetic resonance in a rotating magnetic field
journal, March 1968


High-resolution1H NMR spectroscopy in organs and tissues using slow magic angle spinning
journal, January 2001


Low-speed magic-angle-spinning carbon-13 NMR of fruit tissue
journal, September 1992


A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values
journal, December 1998


Selective excitation in Fourier transform nuclear magnetic resonance
journal, March 1978


An investigation of rat mammary healthy and R3230AC tumor tissues and cells by means of solid-state 13C NMR
journal, December 1996


Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy
journal, June 1997


Improvements to the magic angle hopping experiment
journal, October 1993


An Isotropic Chemical Shift-Chemical Shift Anisotropy Magic-Angle Slow-Spinning 2D NMR Experiment
journal, October 1993


Biochemical Analysis Using High-Resolution Magic Angle Spinning NMR Spectroscopy Distinguishes Lipoma-Like Well-Differentiated Liposarcoma from Normal Fat
journal, September 2001


Amplitude modulation and relaxation due to diffusion in NMR experiments with a rotating sample
journal, December 2000


Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional fourier-transform magic-angle hopping nmr spectroscopy
journal, March 1983