skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth process for gallium nitride porous nanorods

Abstract

A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

Inventors:
;
Issue Date:
Research Org.:
Purdue Research Foundation, West Lafayette, IN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1174203
Patent Number(s):
8,986,835
Application Number:
13/080,165
Assignee:
Purdue Research Foundation (West Lafayette, IN)
DOE Contract Number:  
FC26-06NT42862
Resource Type:
Patent
Resource Relation:
Patent File Date: 2011 Apr 05
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wildeson, Isaac Harshman, and Sands, Timothy David. Growth process for gallium nitride porous nanorods. United States: N. p., 2015. Web.
Wildeson, Isaac Harshman, & Sands, Timothy David. Growth process for gallium nitride porous nanorods. United States.
Wildeson, Isaac Harshman, and Sands, Timothy David. Tue . "Growth process for gallium nitride porous nanorods". United States. https://www.osti.gov/servlets/purl/1174203.
@article{osti_1174203,
title = {Growth process for gallium nitride porous nanorods},
author = {Wildeson, Isaac Harshman and Sands, Timothy David},
abstractNote = {A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {3}
}

Patent:

Save / Share:

Works referenced in this record:

Effect of nanoporous GaN templates with different pore diameters on the subsequent thick GaN layers by HVPE
journal, January 2010

  • Wang, X. Z.; Yu, G. H.; Lin, C. T.
  • Solid State Communications, Vol. 150, Issue 3-4, p. 168-171
  • DOI: 10.1016/j.ssc.2009.10.025

The Controlled Growth of GaN Nanowires
journal, August 2006

  • Hersee, Stephen D.; Sun, Xinyu; Wang, Xin
  • Nano Letters, Vol. 6, Issue 8
  • DOI: 10.1021/nl060553t

A Porous Silicon-Based Optical Interferometric Biosensor
journal, October 1997


Dehydrogenative Silane Coupling on Silicon Surfaces via Early Transition Metal Catalysis
journal, February 2006

  • Li, Yun-Hui; Buriak, Jillian M.
  • Inorganic Chemistry, Vol. 45, Issue 3
  • DOI: 10.1021/ic051431r

Nanoheteroepitaxial lateral overgrowth of GaN on nanoporous Si(111)
journal, April 2006

  • Zang, K. Y.; Wang, Y. D.; Chua, S. J.
  • Applied Physics Letters, Vol. 88, Issue 14
  • DOI: 10.1063/1.2189114

Inorganic nanotubes and fullerene-like nanoparticles
journal, November 2006


Ion Transport in Nanofluidic Channels
journal, January 2004

  • Daiguji, Hirofumi; Yang, Peidong; Majumdar, Arun
  • Nano Letters, Vol. 4, Issue 1
  • DOI: 10.1021/nl0348185

Electromodulated Molecular Transport in Gold-Nanotube Membranes
journal, October 2002

  • Lee, Sang Bok; Martin, Charles R.
  • Journal of the American Chemical Society, Vol. 124, Issue 40
  • DOI: 10.1021/ja027494f

Smart Nanotubes for Bioseparations and Biocatalysis
journal, October 2002

  • Mitchell, David T.; Lee, Sang Bok; Trofin, Lǎcrǎmioara
  • Journal of the American Chemical Society, Vol. 124, Issue 40
  • DOI: 10.1021/ja027247b

Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery
journal, February 2005

  • Chen, C.-C.; Liu, Y.-C.; Wu, C.-H.
  • Advanced Materials, Vol. 17, Issue 4, p. 404-407
  • DOI: 10.1002/adma.200400966

Control of surface morphology through variation of growth rate in SiGe/Si(100) epitaxial films: Nucleation of “quantum fortresses”
journal, September 2002

  • Gray, Jennifer L.; Hull, Robert; Floro, Jerrold A.
  • Applied Physics Letters, Vol. 81, Issue 13
  • DOI: 10.1063/1.1509094

Periodic arrays of epitaxial self-assembled SiGe quantum dot molecules grown on patterned Si substrates
journal, October 2006

  • Gray, J. L.; Hull, R.; Floro, J. A.
  • Journal of Applied Physics, Vol. 100, Issue 8
  • DOI: 10.1063/1.2358003

III–nitrides: Growth, characterization, and properties
journal, February 2000

  • Jain, S. C.; Willander, M.; Narayan, J.
  • Journal of Applied Physics, Vol. 87, Issue 3, p. 965-1006
  • DOI: 10.1063/1.371971

Nanopatterned Contacts to GaN
journal, February 2007


Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template
journal, December 2005

  • Wang, Y. D.; Zang, K. Y.; Chua, S. J.
  • Applied Physics Letters, Vol. 87, Issue 25
  • DOI: 10.1063/1.2147716

Structural and optical properties of InGaN∕GaN multiple quantum wells grown on nano-air-bridged GaN template
journal, October 2006

  • Zang, K. Y.; Wang, Y. D.; Liu, H. F.
  • Applied Physics Letters, Vol. 89, Issue 17
  • DOI: 10.1063/1.2372686

Template-nonlithographic nanopatterning for site control growth of InGaN nanodots
journal, December 2006

  • Wang, Y. D.; Zang, K. Y.; Chua, S. J.
  • Applied Physics Letters, Vol. 89, Issue 24
  • DOI: 10.1063/1.2405412

Structural characterization and strain relaxation in porous GaN layers
journal, February 2000

  • Mynbaeva, M.; Titkov, A.; Kryganovskii, A.
  • Applied Physics Letters, Vol. 76, Issue 9
  • DOI: 10.1063/1.125955

Air-bridged lateral growth of crack-free Al0.24Ga0.76N on highly relaxed porous GaN
journal, February 2004

  • Fareed, R. S. Qhalid; Adivarahan, V.; Chen, C. Q.
  • Applied Physics Letters, Vol. 84, Issue 5
  • DOI: 10.1063/1.1644621

Morphology Control in As-Grown GaN Nanoporous Particles
journal, January 2009

  • Carvajal, Joan J.; Rojo, J. Carlos
  • Crystal Growth & Design, Vol. 9, Issue 1
  • DOI: 10.1021/cg800498y

Porous GaN nanowires synthesized using thermal chemical vapor deposition
journal, July 2003


Wurtzite-type faceted single-crystalline GaN nanotubes
journal, February 2006

  • Liu, Baodan; Bando, Yoshio; Tang, Chengchun
  • Applied Physics Letters, Vol. 88, Issue 9
  • DOI: 10.1063/1.2182065

Crystallography and elasticity of individual GaN nanotubes
journal, April 2009


Single-crystal gallium nitride nanotubes
journal, April 2003

  • Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng
  • Nature, Vol. 422, Issue 6932
  • DOI: 10.1038/nature01551

Inorganic Nanotubes:  A Novel Platform for Nanofluidics
journal, April 2006

  • Goldberger, Joshua; Fan, Rong; Yang, Peidong
  • Accounts of Chemical Research, Vol. 39, Issue 4
  • DOI: 10.1021/ar040274h

Fabrication, Self-Assembly, and Properties of Ultrathin AlN/GaN Porous Crystalline Nanomembranes: Tubes, Spirals, and Curved Sheets
journal, June 2009

  • Mei, Yongfeng; Thurmer, Dominic J.; Deneke, Christoph
  • ACS Nano, Vol. 3, Issue 7
  • DOI: 10.1021/nn900580j

Faceted and Vertically Aligned GaN Nanorod Arrays Fabricated without Catalysts or Lithography
journal, September 2005

  • Deb, Parijat; Kim, Hogyoung; Rawat, Vijay
  • Nano Letters, Vol. 5, Issue 9
  • DOI: 10.1021/nl0510762

III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy
journal, August 2010

  • Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.
  • Journal of Applied Physics, Vol. 108, Issue 4
  • DOI: 10.1063/1.3466998

Dislocation Filtering in GaN Nanostructures
journal, May 2010

  • Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H.
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl9037455

GaN nanostructure design for optimal dislocation filtering
journal, October 2010

  • Liang, Zhiwen; Colby, Robert; Wildeson, Isaac H.
  • Journal of Applied Physics, Vol. 108, Issue 7
  • DOI: 10.1063/1.3491024

Metal organic vapour phase epitaxy of GaN and lateral overgrowth
journal, April 2004


Growth of GaN on porous SiC and GaN substrates
journal, August 2003


Effect of nanoporous GaN templates with different pore diameters on the subsequent thick GaN layers by HVPE
journal, January 2010

  • Wang, X. Z.; Yu, G. H.; Lin, C. T.
  • Solid State Communications, Vol. 150, Issue 3-4, p. 168-171
  • DOI: 10.1016/j.ssc.2009.10.025

Pendeoepitaxy of gallium nitride thin films
journal, July 1999

  • Linthicum, Kevin; Gehrke, Thomas; Thomson, Darren
  • Applied Physics Letters, Vol. 75, Issue 2
  • DOI: 10.1063/1.124317

Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes
journal, August 2003

  • Wu, Qiang; Hu, Zheng; Wang, Xizhang
  • Journal of the American Chemical Society, Vol. 125, Issue 34
  • DOI: 10.1021/ja0359963

Atomic structures and mechanical properties of single-crystal GaN nanotubes
journal, March 2005