skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anode materials for lithium-ion batteries

Abstract

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Inventors:
; ;
Issue Date:
Research Org.:
University of Louisville Research Foundation, Louisville, KY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1166762
Patent Number(s):
8,920,970
Application Number:
12/650,081
Assignee:
University of Louisville Research Foundation (Louisville, KY)
DOE Contract Number:  
FG02-05ER64071
Resource Type:
Patent
Resource Relation:
Patent File Date: 2009 Dec 30
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Sunkara, Mahendra Kumar, Meduri, Praveen, and Sumanasekera, Gamini. Anode materials for lithium-ion batteries. United States: N. p., 2014. Web.
Sunkara, Mahendra Kumar, Meduri, Praveen, & Sumanasekera, Gamini. Anode materials for lithium-ion batteries. United States.
Sunkara, Mahendra Kumar, Meduri, Praveen, and Sumanasekera, Gamini. Tue . "Anode materials for lithium-ion batteries". United States. https://www.osti.gov/servlets/purl/1166762.
@article{osti_1166762,
title = {Anode materials for lithium-ion batteries},
author = {Sunkara, Mahendra Kumar and Meduri, Praveen and Sumanasekera, Gamini},
abstractNote = {An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2014},
month = {12}
}

Patent:

Save / Share:

Works referenced in this record:

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

All-Solid Lithium Electrodes with Mixed-Conductor Matrix
journal, January 1981

  • Boukamp, B. A.
  • Journal of The Electrochemical Society, Vol. 128, Issue 4
  • DOI: 10.1149/1.2127495

Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries
journal, September 2007

  • Derrien, G.; Hassoun, J.; Panero, S.
  • Advanced Materials, Vol. 19, Issue 17, p. 2336-2340
  • DOI: 10.1002/adma.200700748

Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material
journal, May 1997


Highly Conductive Coaxial SnO 2 −In 2 O 3 Heterostructured Nanowires for Li Ion Battery Electrodes
journal, October 2007

  • Kim, Dong-Wan; Hwang, In-Sung; Kwon, S. Joon
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl0715037

Gas-Phase, Bulk Production of Metal Oxide Nanowires and Nanoparticles Using a Microwave Plasma Jet Reactor
journal, October 2008

  • Kumar, Vivekanand; Kim, Jeong H.; Pendyala, Chandrashekhar
  • The Journal of Physical Chemistry C, Vol. 112, Issue 46
  • DOI: 10.1021/jp8078315

A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis
journal, January 2001

  • Li, Naichao; Martin, Charles R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 2
  • DOI: 10.1149/1.1342167

Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries
journal, August 2005

  • Morimoto, Hideyuki; Tobishima, Shin-ichi; Negishi, Hiromitsu
  • Journal of Power Sources, Vol. 146, Issue 1-2, p. 469-472
  • DOI: 10.1016/j.jpowsour.2005.03.053

Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries
journal, January 2007

  • Park, Min-Sik; Wang, Guo-Xiu; Kang, Yong-Mook
  • Angewandte Chemie International Edition, Vol. 46, Issue 5, p. 750-753
  • DOI: 10.1002/anie.200603309

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

The chemical changes occurring upon cycling of a SnO2 negative electrode for lithium ion cell: In situ Mössbauer investigation
journal, February 2006

  • Sandu, I.; Brousse, T.; Schleich, D. M.
  • Journal of Solid State Chemistry, Vol. 179, Issue 2, p. 476-485
  • DOI: 10.1016/j.jssc.2005.10.042

Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries
journal, June 2005


High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

Molten Salt Synthesis of Tin Oxide Nanorods:  Morphological and Electrochemical Features
journal, November 2004

  • Wang, Yong; Lee, Jim Yang
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp0467447

Characterization of SnO2 nanowires as an anode material for Li-ion batteries
journal, September 2005

  • Ying, Z.; Wan, Q.; Cao, H.
  • Applied Physics Letters, Vol. 87, Issue 11, Article No. 113108
  • DOI: 10.1063/1.2045550

Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes
journal, March 2010


Si/TiSi 2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries
journal, March 2010

  • Zhou, Sa; Liu, Xiaohua; Wang, Dunwei
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl903345f