skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alloys of clathrate allotropes for rechargeable batteries

Abstract

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Inventors:
; ;
Issue Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1165134
Patent Number(s):
8,906,551
Application Number:
13/452,403
Assignee:
Southwest Research Institute (San Antonio, TX)
DOE Contract Number:  
AC0205CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Apr 20
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Chan, Candace K, Miller, Michael A, and Chan, Kwai S. Alloys of clathrate allotropes for rechargeable batteries. United States: N. p., 2014. Web.
Chan, Candace K, Miller, Michael A, & Chan, Kwai S. Alloys of clathrate allotropes for rechargeable batteries. United States.
Chan, Candace K, Miller, Michael A, and Chan, Kwai S. Tue . "Alloys of clathrate allotropes for rechargeable batteries". United States. https://www.osti.gov/servlets/purl/1165134.
@article{osti_1165134,
title = {Alloys of clathrate allotropes for rechargeable batteries},
author = {Chan, Candace K and Miller, Michael A and Chan, Kwai S},
abstractNote = {The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2014},
month = {12}
}

Patent:

Save / Share:

Works referenced in this record:

Chemical diffusion in intermediate phases in the lithium-silicon system
journal, May 1981


Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries
journal, January 2007

  • Timmons, A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 5
  • DOI: 10.1149/1.2711075

Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem
journal, January 2008

  • Beattie, S. D.; Larcher, D.; Morcrette, M.
  • Journal of The Electrochemical Society, Vol. 155, Issue 2
  • DOI: 10.1149/1.2817828

Electrochemical Insertion of Lithium into Multiwalled Carbon Nanotube/Silicon Composites Produced by Ballmilling
journal, January 2006

  • Eom, J. Y.; Park, J. W.; Kwon, H. S.
  • Journal of The Electrochemical Society, Vol. 153, Issue 9
  • DOI: 10.1149/1.2213528

Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries
journal, June 2006


Pyrolytic carbon-coated silicon/Carbon Nanotube composites: promising application for Li-ion batteries
journal, January 2008

  • Zhang, Y.; Zhao, Z. G.; Zhang, X. G.
  • International Journal of Nanomanufacturing, Vol. 2, Issue 1/2, Article No. 4
  • DOI: 10.1504/IJNM.2008.017834

In Situ AFM Measurements of the Expansion and Contraction of Amorphous Sn-Co-C Films Reacting with Lithium
journal, January 2007

  • Lewis, R. B.; Timmons, A.; Mar, R. E.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2429042

In Situ Optical Observations of Particle Motion in Alloy Negative Electrodes for Li-Ion Batteries
journal, January 2006

  • Timmons, A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6
  • DOI: 10.1149/1.2194611

Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries
journal, January 2004

  • Ryu, Ji Heon; Kim, Jae Woo; Sung, Yung-Eun
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 10, p. A306-A309
  • DOI: 10.1149/1.1792242

Wide-band-gap Si in open fourfold-coordinated clathrate structures
journal, March 1994

  • Adams, Gary B.; O’Keeffe, Michael; Demkov, Alexander A.
  • Physical Review B, Vol. 49, Issue 12
  • DOI: 10.1103/PhysRevB.49.8048

Phonon density of states of silicon clathrates: Characteristic width narrowing effect with respect to the diamond phase
journal, April 1999


Low Temperature Synthesis of Insertion Oxides for Lithium Batteries
journal, October 1998

  • Manthiram, A.; Kim, J.
  • Chemistry of Materials, Vol. 10, Issue 10
  • DOI: 10.1021/cm980241u

High-pressure properties of group IV clathrates
journal, September 2005


Carbanions. III. Cleavage of Tetraalkylammonium Halides by Sodium in Liquid Ammonia
journal, September 1959

  • Grovenstein, Erling; Stevenson, Robert W.
  • Journal of the American Chemical Society, Vol. 81, Issue 18, p. 4850-4857
  • DOI: 10.1021/ja01527a024

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Superconductivity in Doped s p 3 Semiconductors: The Case of the Clathrates
journal, December 2003


Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes
journal, January 2009

  • Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K.
  • Nano Letters, Vol. 9, Issue 1, p. 491-495
  • DOI: 10.1021/nl8036323

Highly Reversible Lithium Storage in Nanostructured Silicon
journal, January 2003

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596917

Structured Silicon Anodes for Lithium Battery Applications
journal, January 2003

  • Green, Mino; Fielder, Elizabeth; Scrosati, Bruno
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 5, p. A75-A79
  • DOI: 10.1149/1.1563094

Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems
journal, January 2000


A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life
journal, April 2004


Small particle size multiphase Li-alloy anodes for lithium-ionbatteries
journal, September 1996


Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie International Edition, Vol. 47, Issue 52, p. 10151-10154
  • DOI: 10.1002/anie.200804355

A New Class of Low Compressibility Materials: Clathrates of Silicon and Related Materials
journal, January 2002

  • San Miguel, A.; Mélinon, P.; Blase, X.
  • High Pressure Research, Vol. 22, Issue 3-4
  • DOI: 10.1080/08957950212454

Synthesis of a Si-clathrate compound, Sr8GaxSi46−x, and its electrical resistivity measurements
journal, March 2002

  • Imai, Motoharu; Nishida, Kenji; Kimura, Takashi
  • Journal of Alloys and Compounds, Vol. 335, Issue 1-2, p. 270-276
  • DOI: 10.1016/S0925-8388(01)01840-0

Phase stability and chemical composition dependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46−x (8≤x≤15)
journal, May 2011

  • Tsujii, Naohito; Roudebush, John H.; Zevalkink, Alex
  • Journal of Solid State Chemistry, Vol. 184, Issue 5, p. 1293-1303
  • DOI: 10.1016/j.jssc.2011.03.038