skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wireless sensor for detecting explosive material

Abstract

Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

Inventors:
; ; ;
Issue Date:
Research Org.:
Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1162115
Patent Number(s):
8871523
Application Number:
13/832,873
Assignee:
Consolidated Nuclear Security, LLC (Reston, VA)
Patent Classifications (CPCs):
Y - NEW / CROSS SECTIONAL TECHNOLOGIES Y10 - TECHNICAL SUBJECTS COVERED BY FORMER USPC Y10T - TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
G - PHYSICS G01 - MEASURING G01N - INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
DOE Contract Number:  
AC05-00OR22800
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Mar 15
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE

Citation Formats

Lamberti, Vincent E, Howell, Jr., Layton N, Mee, David K, and Sepaniak, Michael J. Wireless sensor for detecting explosive material. United States: N. p., 2014. Web.
Lamberti, Vincent E, Howell, Jr., Layton N, Mee, David K, & Sepaniak, Michael J. Wireless sensor for detecting explosive material. United States.
Lamberti, Vincent E, Howell, Jr., Layton N, Mee, David K, and Sepaniak, Michael J. Tue . "Wireless sensor for detecting explosive material". United States. https://www.osti.gov/servlets/purl/1162115.
@article{osti_1162115,
title = {Wireless sensor for detecting explosive material},
author = {Lamberti, Vincent E and Howell, Jr., Layton N and Mee, David K and Sepaniak, Michael J},
abstractNote = {Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2014},
month = {10}
}

Patent:

Save / Share:

Works referenced in this record:

Explosives detection sensor
patent-application, October 2006


Stress-Induced Chemical Detection Using Flexible Metal−Organic Frameworks
journal, November 2008

  • Allendorf, Mark D.; Houk, Ronald J. T.; Andruszkiewicz, Leanne
  • Journal of the American Chemical Society, Vol. 130, Issue 44, p. 14404-14405
  • https://doi.org/10.1021/ja805235k

Effect of glass removal on the magnetic behavior of FeSiB glass-covered wires
journal, January 1997


Amorphous glass-covered magnetic wires: Preparation, properties, applications
journal, January 1996


Wireless Magnetoelastic Resonance Sensors: A Critical Review
journal, July 2002


Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity
journal, May 2000


Remote query pressure measurement using magnetoelastic sensors
journal, December 1999


Sensors development using its unusual properties of Fe/Co-based amorphous soft magnetic wire
journal, August 2005


Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry
journal, March 2010


Advances of amorphous wire magnetics over 27 years
journal, April 2009


Recent Advances in Trace Explosives Detection Instrumentation
journal, March 2007


Instrumentation for trace detection of high explosives
journal, August 2004


Quantification of multiple bioagents with wireless, remote-query magnetoelastic microsensors
journal, June 2006


A Wireless, Passive, Magnetically-soft Harmonic Sensor for Monitoring Sodium Hypochlorite Concentrations in Water
journal, January 2003


Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection
journal, February 2005


Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire
journal, January 1997


EXPLOSIVES DETECTION: A Challenge for Physical Chemistry
journal, October 1998


Soft magnetic wires
journal, June 2001


Magnetic properties of glass-coated amorphous and nanocrystalline microwires
journal, July 1996


Microwires coated by glass: A new family of soft and hard magnetic materials
journal, October 2000