DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

Abstract

Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

Inventors:
; ; ; ; ;
Issue Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1157506
Patent Number(s):
8829217
Application Number:
13/659,620
Assignee:
Battelle Energy Alliance, LLC (Idaho Falls, ID)
Patent Classifications (CPCs):
C - CHEMISTRY C07 - ORGANIC CHEMISTRY C07F - ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
DOE Contract Number:  
AC07-051D14517
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Fox, Robert V., Rodriguez, Rene G., Pak, Joshua J., Sun, Chivin, Margulieux, Kelsey R., and Holland, Andrew W. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods. United States: N. p., 2014. Web.
Fox, Robert V., Rodriguez, Rene G., Pak, Joshua J., Sun, Chivin, Margulieux, Kelsey R., & Holland, Andrew W. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods. United States.
Fox, Robert V., Rodriguez, Rene G., Pak, Joshua J., Sun, Chivin, Margulieux, Kelsey R., and Holland, Andrew W. Tue . "Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods". United States. https://www.osti.gov/servlets/purl/1157506.
@article{osti_1157506,
title = {Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods},
author = {Fox, Robert V. and Rodriguez, Rene G. and Pak, Joshua J. and Sun, Chivin and Margulieux, Kelsey R. and Holland, Andrew W.},
abstractNote = {Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2014},
month = {9}
}

Works referenced in this record:

Surface structure of CuGaSe2 (001)
journal, June 2005


Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation
journal, March 2006


A facile route to the synthesis of CuInS2 nanoparticles
journal, August 2006


Microwave-assisted alkaline digestion combined with microwave-assisted distillation for the determination of iodide and total iodine in edible seaweed by catalytic spectrophotometry
journal, June 2005


Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation
journal, June 2006


Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation
journal, October 2007


Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis
journal, November 2005


Perspectives for dye-sensitized nanocrystalline solar cells
journal, January 2000


Microwave-Assisted Polyol Synthesis of CuInTe 2 and CuInSe 2 Nanoparticles
journal, November 2003


Physico-chemical characterisation of Cu(In,Al)Se2 thin film for solar cells obtained by a selenisation process
journal, June 2005


Preparation of meso-porous TiO2 gels and their characterization
journal, June 2001


Hybrid Nanorod-Polymer Solar Cells
journal, March 2002


CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices
journal, August 1999


Synthesis of CuInSe<sub>2</sub> and CuInGaSe<sub>2</sub> Nanoparticles by Solvothermal Route
journal, March 2004


Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels
journal, June 1997


A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles
journal, December 1999


Changes in carrier dynamics induced by proton irradiation in quantum dots
journal, March 2002


Influence of Calcination Temperature on the Microstructure of Porous TiO<sub>2</sub> Film
journal, January 2008


Synthesis and Characterization of Indium Oxide Nanoparticles
journal, June 2001


Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors
journal, June 2006


Synthesis of Metastable Wurtzite CuInSe 2 Nanocrystals
journal, March 2010


Optimisation of microwave assisted digestion of sediments and determination of Sn and Hg
journal, April 2006


Microwave assisted synthesis – a critical technology overview
journal, January 2004


Microwave-Assisted Chemical Reactions
journal, December 2003


An efficient synthesis of 4,4′,5,5′-tetraiododibenzo-24-crown-8 and its highly conjugated derivatives
journal, January 2006


Synthesis of Cu−In−S Ternary Nanocrystals with Tunable Structure and Composition
journal, April 2008


Microwave enhanced synthesis of N-propargyl derivatives of imidazole
journal, June 2006