In situ recovery from residually heated sections in a hydrocarbon containing formation
Abstract
Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.
- Inventors:
-
- Bellaire, TX
- Houston, TX
- Issue Date:
- Research Org.:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1011394
- Patent Number(s):
- 7849922
- Application Number:
- 12/106,128
- Assignee:
- Shell Oil Company (Houston, TX)
- Patent Classifications (CPCs):
-
C - CHEMISTRY C09 - DYES C09K - MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
C - CHEMISTRY C10 - PETROLEUM, GAS OR COKE INDUSTRIES C10G - CRACKING HYDROCARBON OILS
- DOE Contract Number:
- AC04-94AL85000
- Resource Type:
- Patent
- Country of Publication:
- United States
- Language:
- English
Citation Formats
Vinegar, Harold J, Karanikas, John Michael, and Ryan, Robert Charles. In situ recovery from residually heated sections in a hydrocarbon containing formation. United States: N. p., 2010.
Web.
Vinegar, Harold J, Karanikas, John Michael, & Ryan, Robert Charles. In situ recovery from residually heated sections in a hydrocarbon containing formation. United States.
Vinegar, Harold J, Karanikas, John Michael, and Ryan, Robert Charles. Tue .
"In situ recovery from residually heated sections in a hydrocarbon containing formation". United States. https://www.osti.gov/servlets/purl/1011394.
@article{osti_1011394,
title = {In situ recovery from residually heated sections in a hydrocarbon containing formation},
author = {Vinegar, Harold J and Karanikas, John Michael and Ryan, Robert Charles},
abstractNote = {Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2010},
month = {12}
}
Works referenced in this record:
Fast-SAGD: Half the Wells and 30% Less Steam
conference, April 2013
- Polikar, M.; Cyr, T. J.; Coates, R. M.
- SPE/CIM International Conference on Horizontal Well Technology
The Thermal and Structural Properties of a Hanna Basin Coal
journal, June 1984
- Glass, R. E.
- Journal of Energy Resources Technology, Vol. 106, Issue 2
On the mechanism of kerogen pyrolysis
journal, October 1984
- Burnham, Alan K.; Happe, James A.
- Fuel, Vol. 63, Issue 10, p. 1353-1356
Chemical Kinetics and Oil Shale Process Design
book, January 1995
- Burnham, Alan K.
- Composition, Geochemistry and Conversion of Oil Shales
Fast-SAGD Application in the Alberta Oil Sands Areas
journal, September 2006
- Shin, H.; Polikar, M.
- Journal of Canadian Petroleum Technology, Vol. 45, Issue 09
The case for frequency domain PD testing in the context of distribution cable
journal, July 2003
- Boggs, S.
- IEEE Electrical Insulation Magazine, Vol. 19, Issue 4
Pyrolysis kinetics for Green River oil shale from the saline zone
journal, October 1983
- Burnham, Alan K.; Huss, Ethan B.; Singleton, Mary F.
- Fuel, Vol. 62, Issue 10, p. 1199-1204
Geochemistry and Pyrolysis of Oil Shales
book, August 1983
- Tissot, B. P.; Vandenbroucke, M.
- ACS Symposium Series
Occurrence of Biomarkers in Green River Shale Oil
book, August 1983
- Singelton, Mary F.; Burnham, AlanK.; Richardson, Jeffrey H.
- ACS Symposium Series
Identification by 13C n.m.r. of carbon types in shale oil and their relation to pyrolysis conditions
journal, July 1984
- Ward, Raymond L.; Burnham, Alan K.
- Fuel, Vol. 63, Issue 7, p. 909-914
Operating Laboratory Oil Shale Retorts In An In-Situ Mode
conference, April 2013
- Sandholtz, Willis A.; Ackerman, Jay F.
- SPE Annual Fall Technical Conference and Exhibition
Application of a self-adaptive detector system on a triple quadrupole MS/MS to high explosives and sulfur-containing pyrolysis gases from oil shale
journal, September 1984
- Wong, C. M.; Crawford, R. W.
- International Journal of Mass Spectrometry and Ion Processes, Vol. 60, Issue 1, p. 107-116
Methods and Energy Sources for Heating Subsurface Geological Formation, Task 1: Heat Delivery Systems
report, January 2003
- Moreno, James B.; Rawlinson, Kim Scott; Jones, Scott A.
Retorting and Combustion Processes in Surface Oil-Shale Retorts
journal, November 1981
- Lewis, A. E.; Braun, R. L.
- Journal of Energy, Vol. 5, Issue 6
Review of Reservoir Parameters to Optimize SAGD and Fast-SAGD Operating Conditions
journal, January 2007
- Shin, H.; Polikar, M.
- Journal of Canadian Petroleum Technology, Vol. 46, Issue 01
Kinetics of oil generation from Colorado oil shale
journal, June 1978
- Campbell, J.; Koskinas, G.; Stout, N.
- Fuel, Vol. 57, Issue 6, p. 372-376
Converter-fed subsea motor drives
journal, January 1996
- Raad, R. O.; Henriksen, T.; Raphael, H. B.
- IEEE Transactions on Industry Applications, Vol. 32, Issue 5
Molecular Mechanism of Oil Shale Pyrolysis in Nitrogen and Hydrogen Atmospheres
book, August 1983
- Hershkowitz, F.; Olmstead, W. N.; Rhodes, R. P.
- ACS Symposium Series
SO2 emissions from the oxidation of retorted oil shale
journal, August 1982
- Taylor, Robert W.; Burnham, Alan K.; Mallon, Richard G.
- Fuel, Vol. 61, Issue 8, p. 781-782
An Analog Computer for Studying Heat Transfer During a Thermal Recovery Process
journal, December 1955
- Vogel, L. C.; Krueger, R. F.
- Transactions of the AIME, Vol. 204, Issue 01
The Benefits of In Situ Upgrading Reactions to the Integrated Operations of the Orinoco Heavy-Oil Fields and Downstream Facilities
conference, April 2013
- Kuhlman, Myron
- SPE/AAPG Western Regional Meeting
The Characteristics of a Low Temperature In Situ Shale Oil
conference, April 2013
- Hill, George R.; Dougan, Paul
- Annual Meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers
Coproduction of oil and electric power from Colorado oil shale☆
journal, April 1992
- Wallman, P.
- Energy, Vol. 17, Issue 4
Evaluation of downhole electric impedance heating systems for paraffin control in oil wells
journal, January 1992
- Bosch, F. G.; Schmitt, K. J.; Eastlund, B. J.
- IEEE Transactions on Industry Applications, Vol. 28, Issue 1
Analysis of oil shale and petroleum source rock pyrolysis by triple quadrupole mass spectrometry: comparisons of gas evolution at the heating rate of 10.degree.C/min
journal, May 1991
- Reynolds, John G.; Crawford, Richard W.; Burnham, Alan K.
- Energy & Fuels, Vol. 5, Issue 3
Electrical Heating With Horizontal Wells, The Heat Transfer Problem
conference, April 2013
- McGee, Bruce C. W.; Vermeulen, Frederick E.
- International Conference on Horizontal Well Technology
Monitoring oil shale retorts by off-gas alkenealkane ratios
journal, June 1980
- Raley, John H.
- Fuel, Vol. 59, Issue 6, p. 419-424
Fast SAGD and Geomechanical Mechanisms
conference, April 2013
- Gong, J.; Polikar, M.; Chalaturnyk, R. J.
- Canadian International Petroleum Conference
A Possible Mechanism of Alkene/Alkane Production
book, September 1981
- Burnham, A. K.; Ward, R. L.
- ACS Symposium Series