ML-AMD/exa-amd

RESOURCE

Abstract

ML-AMD is a Python workflow framework designed to accelerate the discovery and design of functional materials.
Developers:
Moraru, Maxim [1] Li, Ying Wai [1] Xia, Weiyi [2] Zhang, Feng [2]
  1. Los Alamos National Laboratory
  2. Ames Laboratory (AMES), Ames, IA (United States)
Release Date:
2025-05-30
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Licenses:
BSD 3-clause "New" or "Revised" License
Sponsoring Org.:
Code ID:
156263
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Moraru, Maxim, Li, Ying Wai, Xia, Weiyi, and Zhang, Feng. ML-AMD/exa-amd. Computer Software. https://github.com/ML-AMD/exa-amd. USDOE Office of Science (SC), Basic Energy Sciences (BES), USDOE National Nuclear Security Administration (NNSA). 30 May. 2025. Web. doi:10.11578/dc.20250530.10.
Moraru, Maxim, Li, Ying Wai, Xia, Weiyi, & Zhang, Feng. (2025, May 30). ML-AMD/exa-amd. [Computer software]. https://github.com/ML-AMD/exa-amd. https://doi.org/10.11578/dc.20250530.10.
Moraru, Maxim, Li, Ying Wai, Xia, Weiyi, and Zhang, Feng. "ML-AMD/exa-amd." Computer software. May 30, 2025. https://github.com/ML-AMD/exa-amd. https://doi.org/10.11578/dc.20250530.10.
@misc{ doecode_156263,
title = {ML-AMD/exa-amd},
author = {Moraru, Maxim and Li, Ying Wai and Xia, Weiyi and Zhang, Feng},
abstractNote = {ML-AMD is a Python workflow framework designed to accelerate the discovery and design of functional materials.},
doi = {10.11578/dc.20250530.10},
url = {https://doi.org/10.11578/dc.20250530.10},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20250530.10}},
year = {2025},
month = {may}
}