Abstract
With the falling costs of solar arrays and battery storage and reduced reliability of the grid due to natural disasters, small-scale local generation and storage resources are beginning to proliferate. However, very few software options exist for integrated control of building loads, batteries and other distributed energy resources. The available software solutions on the market can force customers to adopt one particular ecosystem of products, thus limiting consumer choice, and are often incapable of operating independently of the grid during blackouts. In this software package, we present the "Solar+ Optimizer" (SPO), a control platform that provides demand flexibility, resiliency and reduced utility bills, built using open-source software. SPO employs Model Predictive Control (MPC) to produce real time optimal control strategies for the building loads and the distributed energy resources on site. SPO is designed to be vendor-agnostic, protocol-independent and resilient to loss of wide-area network connectivity. The software was evaluated in a real convenience store in northern California with on-site solar generation, battery storage and control of HVAC and commercial refrigeration loads. Preliminary tests showed price responsiveness of the building and cost savings of more than 10% in energy costs alone.
- Developers:
-
Prakash, Anand [1] ; Brown, Richard [1] ; Blum, David [1][2] ; Zhang, Kun [1] ; Paul, Lazlo [1]
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- University of Georgia, Athens, GA (United States)
- Release Date:
- 2022-10-24
- Project Type:
- Open Source, Publicly Available Repository
- Software Type:
- Scientific
- Licenses:
-
BSD 3-clause "New" or "Revised" License
- Sponsoring Org.:
-
USDOEPrimary Award/Contract Number:AC02-05CH11231Other Award/Contract Number:Humbolt State University / FP7176 (AWD2720)
- Code ID:
- 135790
- Site Accession Number:
- 2022-132
- Research Org.:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)University of Georgia, Athens, GA (United States)
- Country of Origin:
- United States
Citation Formats
Prakash, Anand K., Brown, Richard E., Blum, David, Zhang, Kun, and Paul, Lazlo.
SolarPlus-Optimizer v0.1.
Computer Software.
https://github.com/LBNL-ETA/SolarPlus-Optimizer.
USDOE.
24 Oct. 2022.
Web.
doi:10.11578/dc.20240716.17.
Prakash, Anand K., Brown, Richard E., Blum, David, Zhang, Kun, & Paul, Lazlo.
(2022, October 24).
SolarPlus-Optimizer v0.1.
[Computer software].
https://github.com/LBNL-ETA/SolarPlus-Optimizer.
https://doi.org/10.11578/dc.20240716.17.
Prakash, Anand K., Brown, Richard E., Blum, David, Zhang, Kun, and Paul, Lazlo.
"SolarPlus-Optimizer v0.1." Computer software.
October 24, 2022.
https://github.com/LBNL-ETA/SolarPlus-Optimizer.
https://doi.org/10.11578/dc.20240716.17.
@misc{
doecode_135790,
title = {SolarPlus-Optimizer v0.1},
author = {Prakash, Anand K. and Brown, Richard E. and Blum, David and Zhang, Kun and Paul, Lazlo},
abstractNote = {With the falling costs of solar arrays and battery storage and reduced reliability of the grid due to natural disasters, small-scale local generation and storage resources are beginning to proliferate. However, very few software options exist for integrated control of building loads, batteries and other distributed energy resources. The available software solutions on the market can force customers to adopt one particular ecosystem of products, thus limiting consumer choice, and are often incapable of operating independently of the grid during blackouts. In this software package, we present the "Solar+ Optimizer" (SPO), a control platform that provides demand flexibility, resiliency and reduced utility bills, built using open-source software. SPO employs Model Predictive Control (MPC) to produce real time optimal control strategies for the building loads and the distributed energy resources on site. SPO is designed to be vendor-agnostic, protocol-independent and resilient to loss of wide-area network connectivity. The software was evaluated in a real convenience store in northern California with on-site solar generation, battery storage and control of HVAC and commercial refrigeration loads. Preliminary tests showed price responsiveness of the building and cost savings of more than 10% in energy costs alone.},
doi = {10.11578/dc.20240716.17},
url = {https://doi.org/10.11578/dc.20240716.17},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20240716.17}},
year = {2022},
month = {oct}
}