Tensor Extraction of Latent Features (TELF)

RESOURCE

Abstract

Tensor ELF is a user-friendly parallel tensor decomposition Python toolbox that includes a suite of machine learning algorithms for CPU and GPU architectures for the analysis of sparse and dense data including utility tools for pre-processing and post-processing.
Release Date:
2024-04-25
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Licenses:
BSD 3-clause "New" or "Revised" License
Sponsoring Org.:
Code ID:
127327
Site Accession Number:
C22048
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Eren, Maksim, Alexandrov, Boian, Bhattarai, Manish, Rasmussen, Kim, Skau, Erik, Truong, Duc, and Djibrilla, Boureima. Tensor Extraction of Latent Features (TELF). Computer Software. https://github.com/lanl/T-ELF. USDOE Laboratory Directed Research and Development (LDRD) Program. 25 Apr. 2024. Web. doi:10.5281/zenodo.10257896.
Eren, Maksim, Alexandrov, Boian, Bhattarai, Manish, Rasmussen, Kim, Skau, Erik, Truong, Duc, & Djibrilla, Boureima. (2024, April 25). Tensor Extraction of Latent Features (TELF). [Computer software]. https://github.com/lanl/T-ELF. https://doi.org/10.5281/zenodo.10257896.
Eren, Maksim, Alexandrov, Boian, Bhattarai, Manish, Rasmussen, Kim, Skau, Erik, Truong, Duc, and Djibrilla, Boureima. "Tensor Extraction of Latent Features (TELF)." Computer software. April 25, 2024. https://github.com/lanl/T-ELF. https://doi.org/10.5281/zenodo.10257896.
@misc{ doecode_127327,
title = {Tensor Extraction of Latent Features (TELF)},
author = {Eren, Maksim and Alexandrov, Boian and Bhattarai, Manish and Rasmussen, Kim and Skau, Erik and Truong, Duc and Djibrilla, Boureima},
abstractNote = {Tensor ELF is a user-friendly parallel tensor decomposition Python toolbox that includes a suite of machine learning algorithms for CPU and GPU architectures for the analysis of sparse and dense data including utility tools for pre-processing and post-processing.},
doi = {10.5281/zenodo.10257896},
url = {https://doi.org/10.5281/zenodo.10257896},
howpublished = {[Computer Software] \url{https://doi.org/10.5281/zenodo.10257896}},
year = {2024},
month = {apr}
}