Abstract
Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.
- Developers:
-
[1]
;
Hamilton, Kathleen
[1]
;
Patton, Robert
[1]
;
Humble, Travis
[1]
;
Potok, Thomas
[1]
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Release Date:
- 2024-03-25
- Project Type:
- Open Source, Publicly Available Repository
- Software Type:
- Scientific
- Programming Languages:
-
Python
- Licenses:
-
BSD 3-clause "New" or "Revised" License
- Sponsoring Org.:
-
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)Primary Award/Contract Number:AC05-00OR22725
- Code ID:
- 123562
- Research Org.:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Country of Origin:
- United States
Citation Formats
Date, Prasanna, Hamilton, Kathleen, Patton, Robert, Humble, Travis, and Potok, Thomas.
MAQ: Machine Learning on Adiabatic Quantum Computers.
Computer Software.
https://github.com/prasannadate/maq.
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR).
25 Mar. 2024.
Web.
doi:10.11578/dc.20240307.2.
Date, Prasanna, Hamilton, Kathleen, Patton, Robert, Humble, Travis, & Potok, Thomas.
(2024, March 25).
MAQ: Machine Learning on Adiabatic Quantum Computers.
[Computer software].
https://github.com/prasannadate/maq.
https://doi.org/10.11578/dc.20240307.2.
Date, Prasanna, Hamilton, Kathleen, Patton, Robert, Humble, Travis, and Potok, Thomas.
"MAQ: Machine Learning on Adiabatic Quantum Computers." Computer software.
March 25, 2024.
https://github.com/prasannadate/maq.
https://doi.org/10.11578/dc.20240307.2.
@misc{
doecode_123562,
title = {MAQ: Machine Learning on Adiabatic Quantum Computers},
author = {Date, Prasanna and Hamilton, Kathleen and Patton, Robert and Humble, Travis and Potok, Thomas},
abstractNote = {Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.},
doi = {10.11578/dc.20240307.2},
url = {https://doi.org/10.11578/dc.20240307.2},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20240307.2}},
year = {2024},
month = {mar}
}