MAQ: Machine Learning on Adiabatic Quantum Computers

RESOURCE

Abstract

Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.
Developers:
ORCID [1] Hamilton, Kathleen [1] Patton, Robert [1] Humble, Travis [1] Potok, Thomas [1]
  1. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Release Date:
2024-03-25
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Programming Languages:
Python
Licenses:
BSD 3-clause "New" or "Revised" License
Sponsoring Org.:
Code ID:
123562
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Date, Prasanna, Hamilton, Kathleen, Patton, Robert, Humble, Travis, and Potok, Thomas. MAQ: Machine Learning on Adiabatic Quantum Computers. Computer Software. https://github.com/prasannadate/maq. USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR). 25 Mar. 2024. Web. doi:10.11578/dc.20240307.2.
Date, Prasanna, Hamilton, Kathleen, Patton, Robert, Humble, Travis, & Potok, Thomas. (2024, March 25). MAQ: Machine Learning on Adiabatic Quantum Computers. [Computer software]. https://github.com/prasannadate/maq. https://doi.org/10.11578/dc.20240307.2.
Date, Prasanna, Hamilton, Kathleen, Patton, Robert, Humble, Travis, and Potok, Thomas. "MAQ: Machine Learning on Adiabatic Quantum Computers." Computer software. March 25, 2024. https://github.com/prasannadate/maq. https://doi.org/10.11578/dc.20240307.2.
@misc{ doecode_123562,
title = {MAQ: Machine Learning on Adiabatic Quantum Computers},
author = {Date, Prasanna and Hamilton, Kathleen and Patton, Robert and Humble, Travis and Potok, Thomas},
abstractNote = {Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.},
doi = {10.11578/dc.20240307.2},
url = {https://doi.org/10.11578/dc.20240307.2},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20240307.2}},
year = {2024},
month = {mar}
}