Autonomous MultiScale Library

RESOURCE

Abstract

AMSLib provides infrastructure to tightly couple multi-scale physics simulation code with ML surrogate model inference. It provides a wholistic runtime execution paradigm to supports uncertainty quantification, surrogate model inference, persistent data storing throughout the execution of a simulation.
Developers:
Bhatia, Harsh [1] Patki, Tapasya [1] Brink, Stephanie [1] Pottier, Loic [1] Stitt, Thomas [1] Parasyris, Konstantinos [1] Milroy, Daniel [1] Laney, Daniel [1] Blake, Robert [1] Yeom, Jae-Seung [1] Bremer, Peer-Timo [1] Doutriaux, Charles [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Release Date:
2023-05-01
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Version:
0.0.0.alpha
Licenses:
Apache License 2.0
Sponsoring Org.:
Code ID:
110346
Site Accession Number:
LLNL-CODE-851455
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Bhatia, Harsh, Patki, Tapasya A., Brink, Stephanie, Pottier, Loic E., Stitt, Thomas M., Parasyris, Konstantinos, Milroy, Daniel J., Laney, Daniel E., Blake, Robert C., Yeom, Jae-Seung, Bremer, Peer-Timo, and Doutriaux, Charles. Autonomous MultiScale Library. Computer Software. https://github.com/LLNL/AMS. USDOE National Nuclear Security Administration (NNSA). 01 May. 2023. Web. doi:10.11578/dc.20230721.1.
Bhatia, Harsh, Patki, Tapasya A., Brink, Stephanie, Pottier, Loic E., Stitt, Thomas M., Parasyris, Konstantinos, Milroy, Daniel J., Laney, Daniel E., Blake, Robert C., Yeom, Jae-Seung, Bremer, Peer-Timo, & Doutriaux, Charles. (2023, May 01). Autonomous MultiScale Library. [Computer software]. https://github.com/LLNL/AMS. https://doi.org/10.11578/dc.20230721.1.
Bhatia, Harsh, Patki, Tapasya A., Brink, Stephanie, Pottier, Loic E., Stitt, Thomas M., Parasyris, Konstantinos, Milroy, Daniel J., Laney, Daniel E., Blake, Robert C., Yeom, Jae-Seung, Bremer, Peer-Timo, and Doutriaux, Charles. "Autonomous MultiScale Library." Computer software. May 01, 2023. https://github.com/LLNL/AMS. https://doi.org/10.11578/dc.20230721.1.
@misc{ doecode_110346,
title = {Autonomous MultiScale Library},
author = {Bhatia, Harsh and Patki, Tapasya A. and Brink, Stephanie and Pottier, Loic E. and Stitt, Thomas M. and Parasyris, Konstantinos and Milroy, Daniel J. and Laney, Daniel E. and Blake, Robert C. and Yeom, Jae-Seung and Bremer, Peer-Timo and Doutriaux, Charles},
abstractNote = {AMSLib provides infrastructure to tightly couple multi-scale physics simulation code with ML surrogate model inference. It provides a wholistic runtime execution paradigm to supports uncertainty quantification, surrogate model inference, persistent data storing throughout the execution of a simulation.},
doi = {10.11578/dc.20230721.1},
url = {https://doi.org/10.11578/dc.20230721.1},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20230721.1}},
year = {2023},
month = {may}
}