Abstract
AMSLib provides infrastructure to tightly couple multi-scale physics simulation code with ML surrogate
model inference. It provides a wholistic runtime execution paradigm to supports uncertainty quantification,
surrogate model inference, persistent data storing throughout the execution of a simulation.
- Developers:
-
Bhatia, Harsh [1] ; Patki, Tapasya [1] ; Brink, Stephanie [1] ; Pottier, Loic [1] ; Stitt, Thomas [1] ; Parasyris, Konstantinos [1] ; Milroy, Daniel [1] ; Laney, Daniel [1] ; Blake, Robert [1] ; Yeom, Jae-Seung [1] ; Bremer, Peer-Timo [1] ; Doutriaux, Charles [1]
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Release Date:
- 2023-05-01
- Project Type:
- Open Source, Publicly Available Repository
- Software Type:
- Scientific
- Version:
- 0.0.0.alpha
- Licenses:
-
Apache License 2.0
- Sponsoring Org.:
-
USDOE National Nuclear Security Administration (NNSA)Primary Award/Contract Number:AC52-07NA27344
- Code ID:
- 110346
- Site Accession Number:
- LLNL-CODE-851455
- Research Org.:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Country of Origin:
- United States
Citation Formats
Bhatia, Harsh, Patki, Tapasya A., Brink, Stephanie, Pottier, Loic E., Stitt, Thomas M., Parasyris, Konstantinos, Milroy, Daniel J., Laney, Daniel E., Blake, Robert C., Yeom, Jae-Seung, Bremer, Peer-Timo, and Doutriaux, Charles.
Autonomous MultiScale Library.
Computer Software.
https://github.com/LLNL/AMS.
USDOE National Nuclear Security Administration (NNSA).
01 May. 2023.
Web.
doi:10.11578/dc.20230721.1.
Bhatia, Harsh, Patki, Tapasya A., Brink, Stephanie, Pottier, Loic E., Stitt, Thomas M., Parasyris, Konstantinos, Milroy, Daniel J., Laney, Daniel E., Blake, Robert C., Yeom, Jae-Seung, Bremer, Peer-Timo, & Doutriaux, Charles.
(2023, May 01).
Autonomous MultiScale Library.
[Computer software].
https://github.com/LLNL/AMS.
https://doi.org/10.11578/dc.20230721.1.
Bhatia, Harsh, Patki, Tapasya A., Brink, Stephanie, Pottier, Loic E., Stitt, Thomas M., Parasyris, Konstantinos, Milroy, Daniel J., Laney, Daniel E., Blake, Robert C., Yeom, Jae-Seung, Bremer, Peer-Timo, and Doutriaux, Charles.
"Autonomous MultiScale Library." Computer software.
May 01, 2023.
https://github.com/LLNL/AMS.
https://doi.org/10.11578/dc.20230721.1.
@misc{
doecode_110346,
title = {Autonomous MultiScale Library},
author = {Bhatia, Harsh and Patki, Tapasya A. and Brink, Stephanie and Pottier, Loic E. and Stitt, Thomas M. and Parasyris, Konstantinos and Milroy, Daniel J. and Laney, Daniel E. and Blake, Robert C. and Yeom, Jae-Seung and Bremer, Peer-Timo and Doutriaux, Charles},
abstractNote = {AMSLib provides infrastructure to tightly couple multi-scale physics simulation code with ML surrogate
model inference. It provides a wholistic runtime execution paradigm to supports uncertainty quantification,
surrogate model inference, persistent data storing throughout the execution of a simulation.},
doi = {10.11578/dc.20230721.1},
url = {https://doi.org/10.11578/dc.20230721.1},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20230721.1}},
year = {2023},
month = {may}
}