Abstract
A topology-based anomaly detection tool for temporal varying data. The input is json or CSV formatted data with a timestamp field identified. The algorithm computes vectorizations (using a vectorization config file) of time windows of data and computes a topological measure of anomalousness. The output is a sequence of anomaly scores for each time window
- Developers:
-
Seppala, Garret [1] ; Central, PNNL Developer [2] ; Purvine, Emilie [1] ; Nowak, Kathleen [3]
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Pacific Northwest National Laboratory
- CBP - DHS
- Release Date:
- 2023-03-14
- Project Type:
- Open Source, Publicly Available Repository
- Software Type:
- Scientific
- Licenses:
-
BSD 2-clause "Simplified" License
- Sponsoring Org.:
-
USDOEPrimary Award/Contract Number:AC05-76RL01830
- Code ID:
- 102608
- Site Accession Number:
- Battelle IPID 32440-E
- Research Org.:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Country of Origin:
- United States
Citation Formats
Seppala, Garret, Central, PNNL Developer, Purvine, Emilie, and Nowak, Kathleen.
pnnl/PHANTOM.
Computer Software.
https://github.com/pnnl/PHANTOM.
USDOE.
14 Mar. 2023.
Web.
doi:10.11578/dc.20230314.5.
Seppala, Garret, Central, PNNL Developer, Purvine, Emilie, & Nowak, Kathleen.
(2023, March 14).
pnnl/PHANTOM.
[Computer software].
https://github.com/pnnl/PHANTOM.
https://doi.org/10.11578/dc.20230314.5.
Seppala, Garret, Central, PNNL Developer, Purvine, Emilie, and Nowak, Kathleen.
"pnnl/PHANTOM." Computer software.
March 14, 2023.
https://github.com/pnnl/PHANTOM.
https://doi.org/10.11578/dc.20230314.5.
@misc{
doecode_102608,
title = {pnnl/PHANTOM},
author = {Seppala, Garret and Central, PNNL Developer and Purvine, Emilie and Nowak, Kathleen},
abstractNote = {A topology-based anomaly detection tool for temporal varying data. The input is json or CSV formatted data with a timestamp field identified. The algorithm computes vectorizations (using a vectorization config file) of time windows of data and computes a topological measure of anomalousness. The output is a sequence of anomaly scores for each time window},
doi = {10.11578/dc.20230314.5},
url = {https://doi.org/10.11578/dc.20230314.5},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20230314.5}},
year = {2023},
month = {mar}
}