Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework
Abstract
The fluid transport code [trans-electric field (Er) module] under the BOUT++ framework has been used to simulatedivertor heat flux width and boundary Er with all drifts and the sheath potential in the scrape-off layer. The calculated steady state radial Er in the pedestal region has been compared with that of experimental measurements from the Alcator C-Mod tokamak. The magnitude and shape of Er are similar to those of the experimental data. In order to understand the relative role of cross-field drifts vs turbulent transport in setting the heat flux width, four C-Mod enhanced Dα H-mode discharges with a lower single null divertor configuration should be simulated. BOUT++ transport simulations with cross-field drifts included yield similar heat flux width λq to that of experimental measurements (within a factor of 2) from both the probe and the surface thermocouple diagnostics and show a similar trend with plasma current to that of the Eich experimental scaling. The simulations show that both drifts and turbulent transport compete to determine the heat flux width. The magnetic drifts play a dominant role in setting the divertor heat-flux width, while the E × B drift decreases the heat flux width by 10%–25%, leading to improved agreement withmore »
- Authors:
- Publication Date:
- DOE Contract Number:
- SC0014264
- Research Org.:
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
- Sponsoring Org.:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Subject:
- 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
- OSTI Identifier:
- 1882400
- DOI:
- https://doi.org/10.7910/DVN/LBB0IG
Citation Formats
Li, N. M., Xu, X. Q., Hughes, J. W., Terry, J. L., Sun, J. Z., and Wang, D. Z. Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework. United States: N. p., 2021.
Web. doi:10.7910/DVN/LBB0IG.
Li, N. M., Xu, X. Q., Hughes, J. W., Terry, J. L., Sun, J. Z., & Wang, D. Z. Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework. United States. doi:https://doi.org/10.7910/DVN/LBB0IG
Li, N. M., Xu, X. Q., Hughes, J. W., Terry, J. L., Sun, J. Z., and Wang, D. Z. 2021.
"Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework". United States. doi:https://doi.org/10.7910/DVN/LBB0IG. https://www.osti.gov/servlets/purl/1882400. Pub date:Wed Apr 21 00:00:00 EDT 2021
@article{osti_1882400,
title = {Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework},
author = {Li, N. M. and Xu, X. Q. and Hughes, J. W. and Terry, J. L. and Sun, J. Z. and Wang, D. Z.},
abstractNote = {The fluid transport code [trans-electric field (Er) module] under the BOUT++ framework has been used to simulatedivertor heat flux width and boundary Er with all drifts and the sheath potential in the scrape-off layer. The calculated steady state radial Er in the pedestal region has been compared with that of experimental measurements from the Alcator C-Mod tokamak. The magnitude and shape of Er are similar to those of the experimental data. In order to understand the relative role of cross-field drifts vs turbulent transport in setting the heat flux width, four C-Mod enhanced Dα H-mode discharges with a lower single null divertor configuration should be simulated. BOUT++ transport simulations with cross-field drifts included yield similar heat flux width λq to that of experimental measurements (within a factor of 2) from both the probe and the surface thermocouple diagnostics and show a similar trend with plasma current to that of the Eich experimental scaling. The simulations show that both drifts and turbulent transport compete to determine the heat flux width. The magnetic drifts play a dominant role in setting the divertor heat-flux width, while the E × B drift decreases the heat flux width by 10%–25%, leading to improved agreement with the experiment relative to Goldston’s model. A turbulence diffusivity scan (χ) identifies two distinct regimes: a drift dominant regime when χ is small and a turbulence dominant regime when χ is large. The Goldston heuristic drift model yields a lower limit of the width λq.},
doi = {10.7910/DVN/LBB0IG},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2021},
month = {4}
}
Works referencing / citing this record:
Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework
journal, January 2020
- Li, N. M.; Xu, X. Q.; Hughes, J. W.
- AIP Advances, Vol. 10, Issue 1