DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li7Mn4CoO12 by Materials Project

Abstract

Li7Mn4CoO12 is Caswellsilverite-derived structured and crystallizes in the monoclinic Cm space group. The structure is three-dimensional. there are seven inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one CoO6 octahedra, edges with four MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–11°. There are a spread of Li–O bond distances ranging from 1.98–2.27 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent MnO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one CoO6 octahedra, edges with five MnO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Li–O bond distances ranging from 2.15–2.18 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with four MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There aremore » a spread of Li–O bond distances ranging from 2.10–2.32 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with two MnO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–13°. There are a spread of Li–O bond distances ranging from 2.10–2.36 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with two equivalent CoO6 octahedra, edges with four MnO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Li–O bond distances ranging from 2.15–2.18 Å. In the sixth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent MnO6 octahedra, edges with five MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Li–O bond distances ranging from 2.00–2.26 Å. In the seventh Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–11°. There are a spread of Li–O bond distances ranging from 2.09–2.19 Å. There are four inequivalent Mn+3.25+ sites. In the first Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, and edges with ten LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–6°. There are a spread of Mn–O bond distances ranging from 1.93–1.96 Å. In the second Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–13°. There are a spread of Mn–O bond distances ranging from 1.96–2.20 Å. In the third Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Mn–O bond distances ranging from 1.95–2.25 Å. In the fourth Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Mn–O bond distances ranging from 1.96–2.27 Å. Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent CoO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 7–10°. There are a spread of Co–O bond distances ranging from 1.93–2.24 Å. There are twelve inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two equivalent Mn+3.25+ atoms to form OLi4Mn2 octahedra that share corners with six OLi4Mn2 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the second O2- site, O2- is bonded to three Li1+, two equivalent Mn+3.25+, and one Co4+ atom to form OLi3Mn2Co octahedra that share corners with six OLi3Mn2Co octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the third O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form a mixture of edge and corner-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 1–10°. In the fourth O2- site, O2- is bonded to five Li1+ and one Mn+3.25+ atom to form a mixture of edge and corner-sharing OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–10°. In the fifth O2- site, O2- is bonded to three Li1+, one Mn+3.25+, and two equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the sixth O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form OLi3Mn3 octahedra that share corners with six OLi3Mn3 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the seventh O2- site, O2- is bonded to three Li1+, two equivalent Mn+3.25+, and one Co4+ atom to form OLi3Mn2Co octahedra that share corners with six OLi4Mn2 octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the eighth O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form OLi3Mn3 octahedra that share corners with six OLi3Mn2Co octahedra and edges with twelve OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the ninth O2- site, O2- is bonded to five Li1+ and one Mn+3.25+ atom to form OLi5Mn octahedra that share corners with six OLi3Mn3 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–10°. In the tenth O2- site, O2- is bonded to three Li1+, one Mn+3.25+, and two equivalent Co4+ atoms to form OLi3MnCo2 octahedra that share corners with six OLi5Mn octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–10°. In the eleventh O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form OLi3Mn3 octahedra that share corners with six OLi3MnCo2 octahedra and edges with twelve OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the twelfth O2- site, O2- is bonded to four Li1+ and two equivalent Mn+3.25+ atoms to form OLi4Mn2 octahedra that share corners with six OLi4Mn2 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–8°.« less

Authors:
Publication Date:
Other Number(s):
mp-1175306
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li7Mn4CoO12; Co-Li-Mn-O
OSTI Identifier:
1759354
DOI:
https://doi.org/10.17188/1759354

Citation Formats

The Materials Project. Materials Data on Li7Mn4CoO12 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1759354.
The Materials Project. Materials Data on Li7Mn4CoO12 by Materials Project. United States. doi:https://doi.org/10.17188/1759354
The Materials Project. 2020. "Materials Data on Li7Mn4CoO12 by Materials Project". United States. doi:https://doi.org/10.17188/1759354. https://www.osti.gov/servlets/purl/1759354. Pub date:Thu Sep 03 00:00:00 EDT 2020
@article{osti_1759354,
title = {Materials Data on Li7Mn4CoO12 by Materials Project},
author = {The Materials Project},
abstractNote = {Li7Mn4CoO12 is Caswellsilverite-derived structured and crystallizes in the monoclinic Cm space group. The structure is three-dimensional. there are seven inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one CoO6 octahedra, edges with four MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–11°. There are a spread of Li–O bond distances ranging from 1.98–2.27 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent MnO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one CoO6 octahedra, edges with five MnO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Li–O bond distances ranging from 2.15–2.18 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with four MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Li–O bond distances ranging from 2.10–2.32 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with two MnO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–13°. There are a spread of Li–O bond distances ranging from 2.10–2.36 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with two equivalent CoO6 octahedra, edges with four MnO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Li–O bond distances ranging from 2.15–2.18 Å. In the sixth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent MnO6 octahedra, edges with five MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Li–O bond distances ranging from 2.00–2.26 Å. In the seventh Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–11°. There are a spread of Li–O bond distances ranging from 2.09–2.19 Å. There are four inequivalent Mn+3.25+ sites. In the first Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, and edges with ten LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–6°. There are a spread of Mn–O bond distances ranging from 1.93–1.96 Å. In the second Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–13°. There are a spread of Mn–O bond distances ranging from 1.96–2.20 Å. In the third Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Mn–O bond distances ranging from 1.95–2.25 Å. In the fourth Mn+3.25+ site, Mn+3.25+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Mn–O bond distances ranging from 1.96–2.27 Å. Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent CoO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 7–10°. There are a spread of Co–O bond distances ranging from 1.93–2.24 Å. There are twelve inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two equivalent Mn+3.25+ atoms to form OLi4Mn2 octahedra that share corners with six OLi4Mn2 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the second O2- site, O2- is bonded to three Li1+, two equivalent Mn+3.25+, and one Co4+ atom to form OLi3Mn2Co octahedra that share corners with six OLi3Mn2Co octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the third O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form a mixture of edge and corner-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 1–10°. In the fourth O2- site, O2- is bonded to five Li1+ and one Mn+3.25+ atom to form a mixture of edge and corner-sharing OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–10°. In the fifth O2- site, O2- is bonded to three Li1+, one Mn+3.25+, and two equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the sixth O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form OLi3Mn3 octahedra that share corners with six OLi3Mn3 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the seventh O2- site, O2- is bonded to three Li1+, two equivalent Mn+3.25+, and one Co4+ atom to form OLi3Mn2Co octahedra that share corners with six OLi4Mn2 octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the eighth O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form OLi3Mn3 octahedra that share corners with six OLi3Mn2Co octahedra and edges with twelve OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the ninth O2- site, O2- is bonded to five Li1+ and one Mn+3.25+ atom to form OLi5Mn octahedra that share corners with six OLi3Mn3 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–10°. In the tenth O2- site, O2- is bonded to three Li1+, one Mn+3.25+, and two equivalent Co4+ atoms to form OLi3MnCo2 octahedra that share corners with six OLi5Mn octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–10°. In the eleventh O2- site, O2- is bonded to three Li1+ and three Mn+3.25+ atoms to form OLi3Mn3 octahedra that share corners with six OLi3MnCo2 octahedra and edges with twelve OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the twelfth O2- site, O2- is bonded to four Li1+ and two equivalent Mn+3.25+ atoms to form OLi4Mn2 octahedra that share corners with six OLi4Mn2 octahedra and edges with twelve OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–8°.},
doi = {10.17188/1759354},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 03 00:00:00 EDT 2020},
month = {Thu Sep 03 00:00:00 EDT 2020}
}