DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li7V3P8O29 by Materials Project

Abstract

Li7V3P8O29 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are fourteen inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 2.02–2.23 Å. In the second Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.09 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with three VO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 63–73°. There are a spread of Li–O bond distances ranging from 1.88–2.32 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.93–2.22 Å. In the fifth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging frommore » 1.95–2.13 Å. In the sixth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.12 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.96–2.13 Å. In the eighth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.96–2.13 Å. In the ninth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.92–2.23 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with three VO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 63–72°. There are a spread of Li–O bond distances ranging from 1.88–2.30 Å. In the eleventh Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.99–2.11 Å. In the twelfth Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 2.01–2.23 Å. In the thirteenth Li1+ site, Li1+ is bonded to six O2- atoms to form distorted LiO6 octahedra that share corners with six PO4 tetrahedra and edges with two LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.17–2.56 Å. In the fourteenth Li1+ site, Li1+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Li–O bond distances ranging from 2.31–2.43 Å. There are six inequivalent V+3.67+ sites. In the first V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.90–2.02 Å. In the second V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and edges with two LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.89–2.03 Å. In the third V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.91–2.03 Å. In the fourth V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.91–2.03 Å. In the fifth V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.97–2.08 Å. In the sixth V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.98–2.08 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 47°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–47°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 42–44°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 33–37°. There are a spread of P–O bond distances ranging from 1.50–1.59 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and a cornercorner with one LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 34–38°. There are a spread of P–O bond distances ranging from 1.49–1.60 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–59°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 41–47°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–54°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–54°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 41–47°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–60°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra. The corner-sharing octahedra tilt angles range from 35–37°. There are a spread of P–O bond distances ranging from 1.49–1.59 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 32–37°. There are a spread of P–O bond distances ranging from 1.50–1.59 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 42–44°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 40–47°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–47°. There are a spread of P–O bond distances ranging from 1.50–1.62 Å. There are fifty-eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal pyramidal geometry to three Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the third O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+3.67+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one V+3.67+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one V+3.67+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+3.67+, and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one V+3.67+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+3.67+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a distorted linear geometry to one Li1+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a single-bond geometry to one P5+ atom. In the fifteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+3.67+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a distorted bent 150 degrees« less

Authors:
Publication Date:
Other Number(s):
mp-1176878
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li7V3P8O29; Li-O-P-V
OSTI Identifier:
1748569
DOI:
https://doi.org/10.17188/1748569

Citation Formats

The Materials Project. Materials Data on Li7V3P8O29 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1748569.
The Materials Project. Materials Data on Li7V3P8O29 by Materials Project. United States. doi:https://doi.org/10.17188/1748569
The Materials Project. 2020. "Materials Data on Li7V3P8O29 by Materials Project". United States. doi:https://doi.org/10.17188/1748569. https://www.osti.gov/servlets/purl/1748569. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1748569,
title = {Materials Data on Li7V3P8O29 by Materials Project},
author = {The Materials Project},
abstractNote = {Li7V3P8O29 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are fourteen inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 2.02–2.23 Å. In the second Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.09 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with three VO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 63–73°. There are a spread of Li–O bond distances ranging from 1.88–2.32 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.93–2.22 Å. In the fifth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.95–2.13 Å. In the sixth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.12 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.96–2.13 Å. In the eighth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.96–2.13 Å. In the ninth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.92–2.23 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with three VO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 63–72°. There are a spread of Li–O bond distances ranging from 1.88–2.30 Å. In the eleventh Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.99–2.11 Å. In the twelfth Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 2.01–2.23 Å. In the thirteenth Li1+ site, Li1+ is bonded to six O2- atoms to form distorted LiO6 octahedra that share corners with six PO4 tetrahedra and edges with two LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.17–2.56 Å. In the fourteenth Li1+ site, Li1+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Li–O bond distances ranging from 2.31–2.43 Å. There are six inequivalent V+3.67+ sites. In the first V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.90–2.02 Å. In the second V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and edges with two LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.89–2.03 Å. In the third V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.91–2.03 Å. In the fourth V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.91–2.03 Å. In the fifth V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.97–2.08 Å. In the sixth V+3.67+ site, V+3.67+ is bonded to six O2- atoms to form VO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.98–2.08 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 47°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–47°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 42–44°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 33–37°. There are a spread of P–O bond distances ranging from 1.50–1.59 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and a cornercorner with one LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 34–38°. There are a spread of P–O bond distances ranging from 1.49–1.60 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–59°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 41–47°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–54°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–54°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 41–47°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–60°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra. The corner-sharing octahedra tilt angles range from 35–37°. There are a spread of P–O bond distances ranging from 1.49–1.59 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 32–37°. There are a spread of P–O bond distances ranging from 1.50–1.59 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 42–44°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 40–47°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–47°. There are a spread of P–O bond distances ranging from 1.50–1.62 Å. There are fifty-eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal pyramidal geometry to three Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the third O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+3.67+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one V+3.67+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one V+3.67+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+3.67+, and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one V+3.67+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+3.67+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a distorted linear geometry to one Li1+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a single-bond geometry to one P5+ atom. In the fifteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+3.67+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+3.67+, and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a distorted bent 150 degrees},
doi = {10.17188/1748569},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}