DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li9Mn2Co5O16 by Materials Project

Abstract

Li9Mn2Co5O16 is Caswellsilverite-derived structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Li–O bond distances ranging from 2.10–2.17 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent MnO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. There are a spread of Li–O bond distances ranging from 2.15–2.22 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent MnO6 octahedra, an edgeedge with one MnO6 octahedra, edges with five CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharingmore » octahedra tilt angles range from 2–10°. There are a spread of Li–O bond distances ranging from 2.02–2.28 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 7–8°. There are a spread of Li–O bond distances ranging from 2.09–2.20 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 8–10°. There are four shorter (2.08 Å) and two longer (2.13 Å) Li–O bond lengths. There are two inequivalent Mn+4.50+ sites. In the first Mn+4.50+ site, Mn+4.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–6°. All Mn–O bond lengths are 1.94 Å. In the second Mn+4.50+ site, Mn+4.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 3–4°. All Mn–O bond lengths are 1.95 Å. There are two inequivalent Co+2.80+ sites. In the first Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. There are two shorter (2.00 Å) and four longer (2.04 Å) Co–O bond lengths. In the second Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two MnO6 octahedra, edges with three CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Co–O bond distances ranging from 1.91–2.12 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–7°. In the second O2- site, O2- is bonded to three Li1+ and three Co+2.80+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–3°. In the third O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two equivalent Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the fourth O2- site, O2- is bonded to four Li1+, one Mn+4.50+, and one Co+2.80+ atom to form a mixture of edge and corner-sharing OLi4MnCo octahedra. The corner-sharing octahedra tilt angles range from 0–7°. In the fifth O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two equivalent Co+2.80+ atoms to form OLi3MnCo2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–3°. In the sixth O2- site, O2- is bonded to four Li1+ and two equivalent Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°.« less

Authors:
Publication Date:
Other Number(s):
mp-1176314
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li9Mn2Co5O16; Co-Li-Mn-O
OSTI Identifier:
1747852
DOI:
https://doi.org/10.17188/1747852

Citation Formats

The Materials Project. Materials Data on Li9Mn2Co5O16 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1747852.
The Materials Project. Materials Data on Li9Mn2Co5O16 by Materials Project. United States. doi:https://doi.org/10.17188/1747852
The Materials Project. 2020. "Materials Data on Li9Mn2Co5O16 by Materials Project". United States. doi:https://doi.org/10.17188/1747852. https://www.osti.gov/servlets/purl/1747852. Pub date:Fri May 01 00:00:00 EDT 2020
@article{osti_1747852,
title = {Materials Data on Li9Mn2Co5O16 by Materials Project},
author = {The Materials Project},
abstractNote = {Li9Mn2Co5O16 is Caswellsilverite-derived structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Li–O bond distances ranging from 2.10–2.17 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent MnO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. There are a spread of Li–O bond distances ranging from 2.15–2.22 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent MnO6 octahedra, an edgeedge with one MnO6 octahedra, edges with five CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–10°. There are a spread of Li–O bond distances ranging from 2.02–2.28 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 7–8°. There are a spread of Li–O bond distances ranging from 2.09–2.20 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 8–10°. There are four shorter (2.08 Å) and two longer (2.13 Å) Li–O bond lengths. There are two inequivalent Mn+4.50+ sites. In the first Mn+4.50+ site, Mn+4.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–6°. All Mn–O bond lengths are 1.94 Å. In the second Mn+4.50+ site, Mn+4.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 3–4°. All Mn–O bond lengths are 1.95 Å. There are two inequivalent Co+2.80+ sites. In the first Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. There are two shorter (2.00 Å) and four longer (2.04 Å) Co–O bond lengths. In the second Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two MnO6 octahedra, edges with three CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Co–O bond distances ranging from 1.91–2.12 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–7°. In the second O2- site, O2- is bonded to three Li1+ and three Co+2.80+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–3°. In the third O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two equivalent Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the fourth O2- site, O2- is bonded to four Li1+, one Mn+4.50+, and one Co+2.80+ atom to form a mixture of edge and corner-sharing OLi4MnCo octahedra. The corner-sharing octahedra tilt angles range from 0–7°. In the fifth O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two equivalent Co+2.80+ atoms to form OLi3MnCo2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 0–3°. In the sixth O2- site, O2- is bonded to four Li1+ and two equivalent Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°.},
doi = {10.17188/1747852},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}