DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li2CoO3 by Materials Project

Abstract

Li2CoO3 is Caswellsilverite-like structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are three inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent CoO6 octahedra, edges with five equivalent CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Li–O bond distances ranging from 1.98–2.19 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with ten LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–6°. There are four shorter (2.17 Å) and two longer (2.20 Å) Li–O bond lengths. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are two shorter (2.01 Å) and four longer (2.14 Å) Li–O bond lengths.more » Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–10°. There are a spread of Co–O bond distances ranging from 1.73–2.10 Å. There are three inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the second O2- site, O2- is bonded to five Li1+ and one Co4+ atom to form OLi5Co octahedra that share corners with six OLi5Co octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the third O2- site, O2- is bonded to three equivalent Li1+ and three equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 1–9°.« less

Authors:
Publication Date:
Other Number(s):
mp-1173890
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li2CoO3; Co-Li-O
OSTI Identifier:
1746455
DOI:
https://doi.org/10.17188/1746455

Citation Formats

The Materials Project. Materials Data on Li2CoO3 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1746455.
The Materials Project. Materials Data on Li2CoO3 by Materials Project. United States. doi:https://doi.org/10.17188/1746455
The Materials Project. 2020. "Materials Data on Li2CoO3 by Materials Project". United States. doi:https://doi.org/10.17188/1746455. https://www.osti.gov/servlets/purl/1746455. Pub date:Sat May 02 00:00:00 EDT 2020
@article{osti_1746455,
title = {Materials Data on Li2CoO3 by Materials Project},
author = {The Materials Project},
abstractNote = {Li2CoO3 is Caswellsilverite-like structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are three inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent CoO6 octahedra, edges with five equivalent CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are a spread of Li–O bond distances ranging from 1.98–2.19 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with ten LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–6°. There are four shorter (2.17 Å) and two longer (2.20 Å) Li–O bond lengths. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are two shorter (2.01 Å) and four longer (2.14 Å) Li–O bond lengths. Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–10°. There are a spread of Co–O bond distances ranging from 1.73–2.10 Å. There are three inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the second O2- site, O2- is bonded to five Li1+ and one Co4+ atom to form OLi5Co octahedra that share corners with six OLi5Co octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the third O2- site, O2- is bonded to three equivalent Li1+ and three equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 1–9°.},
doi = {10.17188/1746455},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}