DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li8Fe7Te(PO4)12 by Materials Project

Abstract

Li8Fe7Te(PO4)12 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are eight inequivalent Li sites. In the first Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.95–1.99 Å. In the second Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.94–2.04 Å. In the third Li site, Li is bonded to four O atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra and edges with two FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.93–2.01 Å. In the fourth Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.92–1.97 Å. In the fifth Li site, Li is bonded to four O atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra and edges with two FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.92–1.98 Å. In the sixth Li site, Li is bonded inmore » a rectangular see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.89–2.07 Å. In the seventh Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.96–2.02 Å. In the eighth Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.91–2.09 Å. There are seven inequivalent Fe sites. In the first Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.93–2.10 Å. In the second Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.97–2.07 Å. In the third Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.95–2.10 Å. In the fourth Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.15 Å. In the fifth Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.95–2.14 Å. In the sixth Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.15 Å. In the seventh Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.96–2.04 Å. There are twelve inequivalent P sites. In the first P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra, corners with three FeO6 octahedra, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 20–37°. There are a spread of P–O bond distances ranging from 1.50–1.63 Å. In the second P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 26–36°. There is two shorter (1.53 Å) and two longer (1.55 Å) P–O bond length. In the third P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 26–36°. There are a spread of P–O bond distances ranging from 1.52–1.56 Å. In the fourth P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra, corners with three FeO6 octahedra, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 28–37°. There are a spread of P–O bond distances ranging from 1.51–1.66 Å. In the fifth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 12–43°. There is one shorter (1.53 Å) and three longer (1.55 Å) P–O bond length. In the sixth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 11–42°. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. In the seventh P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–44°. There are a spread of P–O bond distances ranging from 1.51–1.66 Å. In the eighth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and corners with two LiO4 trigonal pyramids. The corner-sharing octahedra tilt angles range from 10–42°. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. In the ninth P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 6–47°. There are a spread of P–O bond distances ranging from 1.51–1.65 Å. In the tenth P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra, corners with three FeO6 octahedra, and corners with two LiO4 trigonal pyramids. The corner-sharing octahedra tilt angles range from 13–43°. There is three shorter (1.53 Å) and one longer (1.63 Å) P–O bond length. In the eleventh P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–44°. There are a spread of P–O bond distances ranging from 1.51–1.66 Å. In the twelfth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 11–43°. There is one shorter (1.53 Å) and three longer (1.55 Å) P–O bond length. Te is bonded to six O atoms to form TeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Te–O bond distances ranging from 1.92–2.01 Å. There are forty-eight inequivalent O sites. In the first O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the second O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the third O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fourth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fifth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the sixth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the seventh O site, O is bonded in a linear geometry to one Fe and one P atom. In the eighth O site, O is bonded in a linear geometry to one Fe and one P atom. In the ninth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the tenth O site, O is bonded in a distorted trigonal non-coplanar geometry to one Li, one Fe, and one P atom. In the eleventh O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the twelfth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirteenth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fourteenth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fifteenth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the sixteenth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the seventeenth O site, O is bonded in a linear geometry to one Fe and one P atom. In the eighteenth O site, O is bonded in a linear geometry to one Fe and one P atom. In the nineteenth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the twentieth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the twenty-first O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the twenty-second O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the twenty-third O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-fourth O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-fifth O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-sixth O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-seventh O site, O is bonded in a distorted trigonal planar geometry to one Li, one P, and one Te atom. In the twenty-eighth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the twenty-ninth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirtieth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirty-first O site, O is bonded in a linear geometry to one Fe and one P atom. In the thirty-second O site, O is bonded in a linear geometry to one P and one Te atom. In the thirty-third O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the thirty-fourth O site, O is bonded in a distorted trigonal non-coplanar geometry to one Li, one P, and one Te atom. In the thirty-fifth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the thirty-sixth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the thirty-seventh O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirty-eighth O site, O is bonded in a distorted trigonal planar geometry to one Li, one P, and one Te atom. In the thirty-ninth O site, O is bonded in a distorted trigonal non-coplanar geometry to one Li, one Fe, and one P atom. In the fortieth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the forty-first O site, O is bonded in a linear geometry to one Fe and one P atom. In the forty-second O site, O is bonded in a linear geometry to one Fe and one P atom. In the forty-third O site, O is bonded in a distorted trigonal planar geometry to one Li, one P, and one Te atom. In the forty-fourth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the forty-fifth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the forty-sixth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the forty-seventh O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the forty-eighth O site, O is bonded in a bent 150 degrees geometry to one P and one Te atom.« less

Publication Date:
Other Number(s):
mp-1176834
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li8Fe7Te(PO4)12; Fe-Li-O-P-Te
OSTI Identifier:
1728806
DOI:
https://doi.org/10.17188/1728806

Citation Formats

The Materials Project. Materials Data on Li8Fe7Te(PO4)12 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1728806.
The Materials Project. Materials Data on Li8Fe7Te(PO4)12 by Materials Project. United States. doi:https://doi.org/10.17188/1728806
The Materials Project. 2020. "Materials Data on Li8Fe7Te(PO4)12 by Materials Project". United States. doi:https://doi.org/10.17188/1728806. https://www.osti.gov/servlets/purl/1728806. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1728806,
title = {Materials Data on Li8Fe7Te(PO4)12 by Materials Project},
author = {The Materials Project},
abstractNote = {Li8Fe7Te(PO4)12 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are eight inequivalent Li sites. In the first Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.95–1.99 Å. In the second Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.94–2.04 Å. In the third Li site, Li is bonded to four O atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra and edges with two FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.93–2.01 Å. In the fourth Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.92–1.97 Å. In the fifth Li site, Li is bonded to four O atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra and edges with two FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.92–1.98 Å. In the sixth Li site, Li is bonded in a rectangular see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.89–2.07 Å. In the seventh Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.96–2.02 Å. In the eighth Li site, Li is bonded in a distorted see-saw-like geometry to four O atoms. There are a spread of Li–O bond distances ranging from 1.91–2.09 Å. There are seven inequivalent Fe sites. In the first Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.93–2.10 Å. In the second Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.97–2.07 Å. In the third Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.95–2.10 Å. In the fourth Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.15 Å. In the fifth Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.95–2.14 Å. In the sixth Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.15 Å. In the seventh Fe site, Fe is bonded to six O atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.96–2.04 Å. There are twelve inequivalent P sites. In the first P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra, corners with three FeO6 octahedra, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 20–37°. There are a spread of P–O bond distances ranging from 1.50–1.63 Å. In the second P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 26–36°. There is two shorter (1.53 Å) and two longer (1.55 Å) P–O bond length. In the third P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 26–36°. There are a spread of P–O bond distances ranging from 1.52–1.56 Å. In the fourth P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra, corners with three FeO6 octahedra, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 28–37°. There are a spread of P–O bond distances ranging from 1.51–1.66 Å. In the fifth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 12–43°. There is one shorter (1.53 Å) and three longer (1.55 Å) P–O bond length. In the sixth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 11–42°. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. In the seventh P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–44°. There are a spread of P–O bond distances ranging from 1.51–1.66 Å. In the eighth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and corners with two LiO4 trigonal pyramids. The corner-sharing octahedra tilt angles range from 10–42°. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. In the ninth P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 6–47°. There are a spread of P–O bond distances ranging from 1.51–1.65 Å. In the tenth P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra, corners with three FeO6 octahedra, and corners with two LiO4 trigonal pyramids. The corner-sharing octahedra tilt angles range from 13–43°. There is three shorter (1.53 Å) and one longer (1.63 Å) P–O bond length. In the eleventh P site, P is bonded to four O atoms to form PO4 tetrahedra that share a cornercorner with one TeO6 octahedra and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–44°. There are a spread of P–O bond distances ranging from 1.51–1.66 Å. In the twelfth P site, P is bonded to four O atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 11–43°. There is one shorter (1.53 Å) and three longer (1.55 Å) P–O bond length. Te is bonded to six O atoms to form TeO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Te–O bond distances ranging from 1.92–2.01 Å. There are forty-eight inequivalent O sites. In the first O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the second O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the third O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fourth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fifth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the sixth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the seventh O site, O is bonded in a linear geometry to one Fe and one P atom. In the eighth O site, O is bonded in a linear geometry to one Fe and one P atom. In the ninth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the tenth O site, O is bonded in a distorted trigonal non-coplanar geometry to one Li, one Fe, and one P atom. In the eleventh O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the twelfth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirteenth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fourteenth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the fifteenth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the sixteenth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the seventeenth O site, O is bonded in a linear geometry to one Fe and one P atom. In the eighteenth O site, O is bonded in a linear geometry to one Fe and one P atom. In the nineteenth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the twentieth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the twenty-first O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the twenty-second O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the twenty-third O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-fourth O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-fifth O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-sixth O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the twenty-seventh O site, O is bonded in a distorted trigonal planar geometry to one Li, one P, and one Te atom. In the twenty-eighth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the twenty-ninth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirtieth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirty-first O site, O is bonded in a linear geometry to one Fe and one P atom. In the thirty-second O site, O is bonded in a linear geometry to one P and one Te atom. In the thirty-third O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the thirty-fourth O site, O is bonded in a distorted trigonal non-coplanar geometry to one Li, one P, and one Te atom. In the thirty-fifth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the thirty-sixth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the thirty-seventh O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the thirty-eighth O site, O is bonded in a distorted trigonal planar geometry to one Li, one P, and one Te atom. In the thirty-ninth O site, O is bonded in a distorted trigonal non-coplanar geometry to one Li, one Fe, and one P atom. In the fortieth O site, O is bonded in a distorted trigonal planar geometry to one Li, one Fe, and one P atom. In the forty-first O site, O is bonded in a linear geometry to one Fe and one P atom. In the forty-second O site, O is bonded in a linear geometry to one Fe and one P atom. In the forty-third O site, O is bonded in a distorted trigonal planar geometry to one Li, one P, and one Te atom. In the forty-fourth O site, O is bonded in a distorted T-shaped geometry to one Li, one Fe, and one P atom. In the forty-fifth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the forty-sixth O site, O is bonded in a 3-coordinate geometry to one Li, one Fe, and one P atom. In the forty-seventh O site, O is bonded in a bent 150 degrees geometry to one Fe and one P atom. In the forty-eighth O site, O is bonded in a bent 150 degrees geometry to one P and one Te atom.},
doi = {10.17188/1728806},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}