DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Al3P3HC4NO13 by Materials Project

Abstract

(C)2C2NAl3P3HO13 crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional and consists of two 2-butyne molecules, four aziridine molecules, and one Al3P3HO13 framework. In the Al3P3HO13 framework, there are three inequivalent Al3+ sites. In the first Al3+ site, Al3+ is bonded to four O2- atoms to form AlO4 tetrahedra that share corners with four PO4 tetrahedra. There is three shorter (1.75 Å) and one longer (1.76 Å) Al–O bond length. In the second Al3+ site, Al3+ is bonded to five O2- atoms to form AlO5 trigonal bipyramids that share corners with four PO4 tetrahedra and a cornercorner with one AlO5 trigonal bipyramid. There are a spread of Al–O bond distances ranging from 1.79–1.95 Å. In the third Al3+ site, Al3+ is bonded to five O2- atoms to form AlO5 trigonal bipyramids that share corners with four PO4 tetrahedra and a cornercorner with one AlO5 trigonal bipyramid. There are a spread of Al–O bond distances ranging from 1.81–1.91 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one AlO4 tetrahedra and corners with three AlO5 trigonal bipyramids. There are amore » spread of P–O bond distances ranging from 1.52–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent AlO4 tetrahedra and corners with two AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one AlO4 tetrahedra and corners with three AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. There are thirteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 120 degrees geometry to one Al3+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 120 degrees geometry to one Al3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a 1-coordinate geometry to two Al3+ and one H1+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom.« less

Publication Date:
Other Number(s):
mp-1204462
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Al3P3HC4NO13; Al-C-H-N-O-P
OSTI Identifier:
1728762
DOI:
https://doi.org/10.17188/1728762

Citation Formats

The Materials Project. Materials Data on Al3P3HC4NO13 by Materials Project. United States: N. p., 2019. Web. doi:10.17188/1728762.
The Materials Project. Materials Data on Al3P3HC4NO13 by Materials Project. United States. doi:https://doi.org/10.17188/1728762
The Materials Project. 2019. "Materials Data on Al3P3HC4NO13 by Materials Project". United States. doi:https://doi.org/10.17188/1728762. https://www.osti.gov/servlets/purl/1728762. Pub date:Sat Jan 12 00:00:00 EST 2019
@article{osti_1728762,
title = {Materials Data on Al3P3HC4NO13 by Materials Project},
author = {The Materials Project},
abstractNote = {(C)2C2NAl3P3HO13 crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional and consists of two 2-butyne molecules, four aziridine molecules, and one Al3P3HO13 framework. In the Al3P3HO13 framework, there are three inequivalent Al3+ sites. In the first Al3+ site, Al3+ is bonded to four O2- atoms to form AlO4 tetrahedra that share corners with four PO4 tetrahedra. There is three shorter (1.75 Å) and one longer (1.76 Å) Al–O bond length. In the second Al3+ site, Al3+ is bonded to five O2- atoms to form AlO5 trigonal bipyramids that share corners with four PO4 tetrahedra and a cornercorner with one AlO5 trigonal bipyramid. There are a spread of Al–O bond distances ranging from 1.79–1.95 Å. In the third Al3+ site, Al3+ is bonded to five O2- atoms to form AlO5 trigonal bipyramids that share corners with four PO4 tetrahedra and a cornercorner with one AlO5 trigonal bipyramid. There are a spread of Al–O bond distances ranging from 1.81–1.91 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one AlO4 tetrahedra and corners with three AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.52–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent AlO4 tetrahedra and corners with two AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one AlO4 tetrahedra and corners with three AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. There are thirteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 120 degrees geometry to one Al3+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 120 degrees geometry to one Al3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a 1-coordinate geometry to two Al3+ and one H1+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom.},
doi = {10.17188/1728762},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {1}
}