DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on LiCoO2 by Materials Project

Abstract

LiCoO2 is Caswellsilverite-like structured and crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are four inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–9°. There are a spread of Li–O bond distances ranging from 1.85–2.11 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–13°. There are a spread of Li–O bond distances ranging from 2.03–2.20 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Li–O bond distances ranging from 1.96–2.15 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms tomore » form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–9°. There are a spread of Li–O bond distances ranging from 2.06–2.18 Å. There are four inequivalent Co3+ sites. In the first Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–13°. There are a spread of Co–O bond distances ranging from 1.88–2.13 Å. In the second Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–9°. There are a spread of Co–O bond distances ranging from 1.91–2.11 Å. In the third Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Co–O bond distances ranging from 1.96–2.21 Å. In the fourth Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–9°. There are a spread of Co–O bond distances ranging from 2.01–2.24 Å. There are four inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of distorted edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the second O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the third O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the fourth O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°.« less

Authors:
Publication Date:
Other Number(s):
mp-1097885
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; LiCoO2; Co-Li-O
OSTI Identifier:
1705454
DOI:
https://doi.org/10.17188/1705454

Citation Formats

The Materials Project. Materials Data on LiCoO2 by Materials Project. United States: N. p., 2018. Web. doi:10.17188/1705454.
The Materials Project. Materials Data on LiCoO2 by Materials Project. United States. doi:https://doi.org/10.17188/1705454
The Materials Project. 2018. "Materials Data on LiCoO2 by Materials Project". United States. doi:https://doi.org/10.17188/1705454. https://www.osti.gov/servlets/purl/1705454. Pub date:Mon May 21 00:00:00 EDT 2018
@article{osti_1705454,
title = {Materials Data on LiCoO2 by Materials Project},
author = {The Materials Project},
abstractNote = {LiCoO2 is Caswellsilverite-like structured and crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are four inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–9°. There are a spread of Li–O bond distances ranging from 1.85–2.11 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–13°. There are a spread of Li–O bond distances ranging from 2.03–2.20 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Li–O bond distances ranging from 1.96–2.15 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–9°. There are a spread of Li–O bond distances ranging from 2.06–2.18 Å. There are four inequivalent Co3+ sites. In the first Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–13°. There are a spread of Co–O bond distances ranging from 1.88–2.13 Å. In the second Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–9°. There are a spread of Co–O bond distances ranging from 1.91–2.11 Å. In the third Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Co–O bond distances ranging from 1.96–2.21 Å. In the fourth Co3+ site, Co3+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–9°. There are a spread of Co–O bond distances ranging from 2.01–2.24 Å. There are four inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of distorted edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the second O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the third O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the fourth O2- site, O2- is bonded to three Li1+ and three Co3+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°.},
doi = {10.17188/1705454},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {5}
}

Works referenced in this record: