skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li9Mn7O16 by Materials Project

Abstract

Li9Mn7O16 is Caswellsilverite-like structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are four inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with five MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Li–O bond distances ranging from 2.11–2.49 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with five MnO6 octahedra, edges with five MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are a spread of Li–O bond distances ranging from 2.08–2.21 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with two equivalent LiO6 octahedra, corners with four MnO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are a spread of Li–O bond distances ranging from 2.06–2.19 Å. In the fourth Li1+more » site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are four shorter (2.04 Å) and two longer (2.29 Å) Li–O bond lengths. There are four inequivalent Mn+3.29+ sites. In the first Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are four shorter (1.96 Å) and two longer (2.25 Å) Mn–O bond lengths. In the second Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Mn–O bond distances ranging from 1.94–1.97 Å. In the third Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Mn–O bond distances ranging from 1.95–2.32 Å. In the fourth Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–7°. There are a spread of Mn–O bond distances ranging from 1.96–2.28 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two Mn+3.29+ atoms to form a mixture of distorted corner and edge-sharing OLi4Mn2 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the second O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the third O2- site, O2- is bonded to four Li1+ and two equivalent Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi4Mn2 octahedra. The corner-sharing octahedra tilt angles range from 0–4°. In the fourth O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the fifth O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the sixth O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–4°.« less

Publication Date:
Other Number(s):
mp-1100497
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li9Mn7O16; Li-Mn-O
OSTI Identifier:
1676972
DOI:
https://doi.org/10.17188/1676972

Citation Formats

The Materials Project. Materials Data on Li9Mn7O16 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1676972.
The Materials Project. Materials Data on Li9Mn7O16 by Materials Project. United States. doi:https://doi.org/10.17188/1676972
The Materials Project. 2020. "Materials Data on Li9Mn7O16 by Materials Project". United States. doi:https://doi.org/10.17188/1676972. https://www.osti.gov/servlets/purl/1676972. Pub date:Sat May 02 00:00:00 EDT 2020
@article{osti_1676972,
title = {Materials Data on Li9Mn7O16 by Materials Project},
author = {The Materials Project},
abstractNote = {Li9Mn7O16 is Caswellsilverite-like structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are four inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six MnO6 octahedra, edges with five MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Li–O bond distances ranging from 2.11–2.49 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with five MnO6 octahedra, edges with five MnO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are a spread of Li–O bond distances ranging from 2.08–2.21 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with two equivalent LiO6 octahedra, corners with four MnO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are a spread of Li–O bond distances ranging from 2.06–2.19 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are four shorter (2.04 Å) and two longer (2.29 Å) Li–O bond lengths. There are four inequivalent Mn+3.29+ sites. In the first Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–14°. There are four shorter (1.96 Å) and two longer (2.25 Å) Mn–O bond lengths. In the second Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Mn–O bond distances ranging from 1.94–1.97 Å. In the third Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–8°. There are a spread of Mn–O bond distances ranging from 1.95–2.32 Å. In the fourth Mn+3.29+ site, Mn+3.29+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with six LiO6 octahedra, and edges with six MnO6 octahedra. The corner-sharing octahedra tilt angles range from 6–7°. There are a spread of Mn–O bond distances ranging from 1.96–2.28 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two Mn+3.29+ atoms to form a mixture of distorted corner and edge-sharing OLi4Mn2 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the second O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the third O2- site, O2- is bonded to four Li1+ and two equivalent Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi4Mn2 octahedra. The corner-sharing octahedra tilt angles range from 0–4°. In the fourth O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the fifth O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the sixth O2- site, O2- is bonded to three Li1+ and three Mn+3.29+ atoms to form a mixture of corner and edge-sharing OLi3Mn3 octahedra. The corner-sharing octahedra tilt angles range from 0–4°.},
doi = {10.17188/1676972},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}