Materials Data on Li9Mn2Co5O16 by Materials Project
Abstract
Li9Mn2Co5O16 is Caswellsilverite-derived structured and crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one MnO6 octahedra, corners with two equivalent LiO6 octahedra, corners with three CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–13°. There are a spread of Li–O bond distances ranging from 2.04–2.23 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with two equivalent MnO6 octahedra, corners with four CoO6 octahedra, an edgeedge with one MnO6 octahedra, edges with four CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–11°. There are a spread of Li–O bond distances ranging from 2.07–2.28 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with two equivalent MnO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with onemore »
- Authors:
- Publication Date:
- Other Number(s):
- mp-1175713
- DOE Contract Number:
- AC02-05CH11231; EDCBEE
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Collaborations:
- MIT; UC Berkeley; Duke; U Louvain
- Subject:
- 36 MATERIALS SCIENCE
- Keywords:
- crystal structure; Li9Mn2Co5O16; Co-Li-Mn-O
- OSTI Identifier:
- 1675628
- DOI:
- https://doi.org/10.17188/1675628
Citation Formats
The Materials Project. Materials Data on Li9Mn2Co5O16 by Materials Project. United States: N. p., 2020.
Web. doi:10.17188/1675628.
The Materials Project. Materials Data on Li9Mn2Co5O16 by Materials Project. United States. doi:https://doi.org/10.17188/1675628
The Materials Project. 2020.
"Materials Data on Li9Mn2Co5O16 by Materials Project". United States. doi:https://doi.org/10.17188/1675628. https://www.osti.gov/servlets/purl/1675628. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1675628,
title = {Materials Data on Li9Mn2Co5O16 by Materials Project},
author = {The Materials Project},
abstractNote = {Li9Mn2Co5O16 is Caswellsilverite-derived structured and crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one MnO6 octahedra, corners with two equivalent LiO6 octahedra, corners with three CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 5–13°. There are a spread of Li–O bond distances ranging from 2.04–2.23 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with two equivalent MnO6 octahedra, corners with four CoO6 octahedra, an edgeedge with one MnO6 octahedra, edges with four CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–11°. There are a spread of Li–O bond distances ranging from 2.07–2.28 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with two equivalent MnO6 octahedra, corners with three equivalent CoO6 octahedra, an edgeedge with one MnO6 octahedra, edges with four CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–10°. There are a spread of Li–O bond distances ranging from 2.04–2.31 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one MnO6 octahedra, corners with five CoO6 octahedra, edges with two equivalent MnO6 octahedra, edges with three CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–13°. There are a spread of Li–O bond distances ranging from 2.06–2.25 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 5–10°. There are a spread of Li–O bond distances ranging from 2.10–2.18 Å. Mn+4.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–9°. There are a spread of Mn–O bond distances ranging from 1.94–1.96 Å. There are three inequivalent Co+2.80+ sites. In the first Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with three CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–13°. There are a spread of Co–O bond distances ranging from 1.89–2.20 Å. In the second Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with three CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–13°. There are a spread of Co–O bond distances ranging from 1.91–2.17 Å. In the third Co+2.80+ site, Co+2.80+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with four CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–6°. There are a spread of Co–O bond distances ranging from 1.99–2.06 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+, two equivalent Mn+4.50+, and one Co+2.80+ atom to form OLi3Mn2Co octahedra that share corners with six OLi3MnCo2 octahedra and edges with twelve OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the second O2- site, O2- is bonded to three Li1+ and three Co+2.80+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 0–9°. In the third O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–13°. In the fourth O2- site, O2- is bonded to four Li1+ and two Co+2.80+ atoms to form OLi4Co2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the fifth O2- site, O2- is bonded to four Li1+ and two Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–13°. In the sixth O2- site, O2- is bonded to three Li1+, two equivalent Mn+4.50+, and one Co+2.80+ atom to form a mixture of edge and corner-sharing OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the seventh O2- site, O2- is bonded to three Li1+, one Mn+4.50+, and two Co+2.80+ atoms to form OLi3MnCo2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 1–9°. In the eighth O2- site, O2- is bonded to four Li1+ and two Co+2.80+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–9°.},
doi = {10.17188/1675628},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}