Materials Data on Li5Mn4(P2O7)4 by Materials Project
Abstract
Li5Mn4(P2O7)4 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are ten inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.90–2.59 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.83–1.97 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 trigonal pyramids that share a cornercorner with one MnO6 octahedra, corners with four PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 64°. There are a spread of Li–O bond distances ranging from 1.83–1.95 Å. In the fourth Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.85–2.12 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atomsmore »
- Authors:
- Publication Date:
- Other Number(s):
- mp-1177157
- DOE Contract Number:
- AC02-05CH11231; EDCBEE
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Collaborations:
- MIT; UC Berkeley; Duke; U Louvain
- Subject:
- 36 MATERIALS SCIENCE
- Keywords:
- crystal structure; Li5Mn4(P2O7)4; Li-Mn-O-P
- OSTI Identifier:
- 1675475
- DOI:
- https://doi.org/10.17188/1675475
Citation Formats
The Materials Project. Materials Data on Li5Mn4(P2O7)4 by Materials Project. United States: N. p., 2020.
Web. doi:10.17188/1675475.
The Materials Project. Materials Data on Li5Mn4(P2O7)4 by Materials Project. United States. doi:https://doi.org/10.17188/1675475
The Materials Project. 2020.
"Materials Data on Li5Mn4(P2O7)4 by Materials Project". United States. doi:https://doi.org/10.17188/1675475. https://www.osti.gov/servlets/purl/1675475. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1675475,
title = {Materials Data on Li5Mn4(P2O7)4 by Materials Project},
author = {The Materials Project},
abstractNote = {Li5Mn4(P2O7)4 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are ten inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.90–2.59 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.83–1.97 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 trigonal pyramids that share a cornercorner with one MnO6 octahedra, corners with four PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 64°. There are a spread of Li–O bond distances ranging from 1.83–1.95 Å. In the fourth Li1+ site, Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.85–2.12 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one MnO6 octahedra, corners with four PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and an edgeedge with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 45°. There are a spread of Li–O bond distances ranging from 1.90–1.97 Å. In the sixth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.96–2.63 Å. In the seventh Li1+ site, Li1+ is bonded to five O2- atoms to form distorted LiO5 trigonal bipyramids that share corners with two LiO4 tetrahedra, corners with five PO4 tetrahedra, and edges with two MnO6 octahedra. There are a spread of Li–O bond distances ranging from 1.95–2.47 Å. In the eighth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share a cornercorner with one MnO6 octahedra, corners with four PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 70°. There are a spread of Li–O bond distances ranging from 1.89–1.98 Å. In the ninth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share a cornercorner with one MnO6 octahedra, corners with four PO4 tetrahedra, and an edgeedge with one MnO6 octahedra. The corner-sharing octahedral tilt angles are 61°. There are a spread of Li–O bond distances ranging from 1.90–2.09 Å. In the tenth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.28 Å. There are eight inequivalent Mn+2.75+ sites. In the first Mn+2.75+ site, Mn+2.75+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one MnO5 trigonal bipyramid. There are a spread of Mn–O bond distances ranging from 1.92–2.18 Å. In the second Mn+2.75+ site, Mn+2.75+ is bonded to five O2- atoms to form MnO5 trigonal bipyramids that share a cornercorner with one LiO4 tetrahedra, corners with five PO4 tetrahedra, and an edgeedge with one MnO6 octahedra. There are a spread of Mn–O bond distances ranging from 1.98–2.14 Å. In the third Mn+2.75+ site, Mn+2.75+ is bonded to five O2- atoms to form MnO5 trigonal bipyramids that share corners with five PO4 tetrahedra, a cornercorner with one LiO4 trigonal pyramid, and an edgeedge with one MnO6 octahedra. There are a spread of Mn–O bond distances ranging from 1.92–2.14 Å. In the fourth Mn+2.75+ site, Mn+2.75+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one MnO5 trigonal bipyramid. There are a spread of Mn–O bond distances ranging from 1.96–2.20 Å. In the fifth Mn+2.75+ site, Mn+2.75+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.93–2.30 Å. In the sixth Mn+2.75+ site, Mn+2.75+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Mn–O bond distances ranging from 2.12–2.69 Å. In the seventh Mn+2.75+ site, Mn+2.75+ is bonded to six O2- atoms to form distorted MnO6 octahedra that share corners with three LiO4 tetrahedra, corners with four PO4 tetrahedra, a cornercorner with one LiO4 trigonal pyramid, an edgeedge with one MnO6 octahedra, an edgeedge with one PO4 tetrahedra, and an edgeedge with one LiO5 trigonal bipyramid. There are a spread of Mn–O bond distances ranging from 2.08–2.64 Å. In the eighth Mn+2.75+ site, Mn+2.75+ is bonded to six O2- atoms to form distorted MnO6 octahedra that share corners with six PO4 tetrahedra, an edgeedge with one MnO6 octahedra, and an edgeedge with one LiO5 trigonal bipyramid. There are a spread of Mn–O bond distances ranging from 1.98–2.46 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 54°. There are a spread of P–O bond distances ranging from 1.51–1.60 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 31°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedra tilt angles range from 53–54°. There are a spread of P–O bond distances ranging from 1.50–1.60 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 30–55°. There are a spread of P–O bond distances ranging from 1.52–1.63 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 34–47°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 54°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 56°. There are a spread of P–O bond distances ranging from 1.48–1.62 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 33°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two MnO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedra tilt angles range from 40–62°. There are a spread of P–O bond distances ranging from 1.48–1.61 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two MnO6 octahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedra tilt angles range from 55–60°. There are a spread of P–O bond distances ranging from 1.48–1.61 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, a cornercorner with one LiO4 trigonal pyramid, and an edgeedge with one MnO6 octahedra. The corner-sharing octahedral tilt angles are 56°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 24–50°. There are a spread of P–O bond distances ranging from 1.53–1.62 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 29–47°. There are a spread of P–O bond distances ranging from 1.53–1.61 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 54°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one LiO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 36°. There are a spread of P–O bond distances ranging from 1.48–1.62 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two MnO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.49–1.61 Å. There are fifty-six inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to two Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn+2.75+ and one P5+ atom. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to two Mn+2.75+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn+2.75+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn+2.75+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted trigonal non},
doi = {10.17188/1675475},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}