DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li9Co7O16 by Materials Project

Abstract

Li9Co7O16 is Caswellsilverite-like structured and crystallizes in the monoclinic P2/m space group. The structure is three-dimensional. there are six inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with five CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–9°. There are a spread of Li–O bond distances ranging from 2.02–2.15 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–7°. There are four shorter (2.12 Å) and two longer (2.16 Å) Li–O bond lengths. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Li–O bond distances ranging from 2.06–2.20 Å. In the fourth Li1+ site, Li1+ is bondedmore » to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with four CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–8°. There are a spread of Li–O bond distances ranging from 2.10–2.21 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with two equivalent CoO6 octahedra, corners with four equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are four shorter (2.08 Å) and two longer (2.13 Å) Li–O bond lengths. In the sixth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are two shorter (2.06 Å) and four longer (2.09 Å) Li–O bond lengths. There are four inequivalent Co+3.29+ sites. In the first Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with four CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–8°. There are a spread of Co–O bond distances ranging from 1.76–2.07 Å. In the second Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Co–O bond distances ranging from 1.96–2.10 Å. In the third Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–9°. All Co–O bond lengths are 2.03 Å. In the fourth Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Co–O bond distances ranging from 1.93–2.04 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two equivalent Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the second O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the third O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form OLi3Co3 octahedra that share corners with six OLi4Co2 octahedra and edges with twelve OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the fourth O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–6°. In the fifth O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the sixth O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–4°. In the seventh O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the eighth O2- site, O2- is bonded to five Li1+ and one Co+3.29+ atom to form OLi5Co octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–6°.« less

Authors:
Publication Date:
Other Number(s):
mp-1175396
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li9Co7O16; Co-Li-O
OSTI Identifier:
1672841
DOI:
https://doi.org/10.17188/1672841

Citation Formats

The Materials Project. Materials Data on Li9Co7O16 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1672841.
The Materials Project. Materials Data on Li9Co7O16 by Materials Project. United States. doi:https://doi.org/10.17188/1672841
The Materials Project. 2020. "Materials Data on Li9Co7O16 by Materials Project". United States. doi:https://doi.org/10.17188/1672841. https://www.osti.gov/servlets/purl/1672841. Pub date:Sat May 02 00:00:00 EDT 2020
@article{osti_1672841,
title = {Materials Data on Li9Co7O16 by Materials Project},
author = {The Materials Project},
abstractNote = {Li9Co7O16 is Caswellsilverite-like structured and crystallizes in the monoclinic P2/m space group. The structure is three-dimensional. there are six inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with five CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–9°. There are a spread of Li–O bond distances ranging from 2.02–2.15 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–7°. There are four shorter (2.12 Å) and two longer (2.16 Å) Li–O bond lengths. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Li–O bond distances ranging from 2.06–2.20 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with four CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–8°. There are a spread of Li–O bond distances ranging from 2.10–2.21 Å. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with two equivalent CoO6 octahedra, corners with four equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are four shorter (2.08 Å) and two longer (2.13 Å) Li–O bond lengths. In the sixth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are two shorter (2.06 Å) and four longer (2.09 Å) Li–O bond lengths. There are four inequivalent Co+3.29+ sites. In the first Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with four CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–8°. There are a spread of Co–O bond distances ranging from 1.76–2.07 Å. In the second Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Co–O bond distances ranging from 1.96–2.10 Å. In the third Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–9°. All Co–O bond lengths are 2.03 Å. In the fourth Co+3.29+ site, Co+3.29+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–7°. There are a spread of Co–O bond distances ranging from 1.93–2.04 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded to four Li1+ and two equivalent Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the second O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the third O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form OLi3Co3 octahedra that share corners with six OLi4Co2 octahedra and edges with twelve OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–2°. In the fourth O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–6°. In the fifth O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedral tilt angles are 0°. In the sixth O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form OLi3Co3 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–4°. In the seventh O2- site, O2- is bonded to three Li1+ and three Co+3.29+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the eighth O2- site, O2- is bonded to five Li1+ and one Co+3.29+ atom to form OLi5Co octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi4Co2 octahedra. The corner-sharing octahedra tilt angles range from 0–6°.},
doi = {10.17188/1672841},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}