skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 14 TeV pp collisions, SM type, PYTHIA8 generator: tev14pp_qcd_pythia8_weighted

Abstract

Inclusive dijet events for pT>40 GeV. (PhaseSpace:pTHatMin=40 GeV). PDF: LHAPDF6:NNPDF23_lo_as_0130_qed and Tune:pp = 14 (Monash 2013 Tune). 5,000 events per file. How to use: The events are weighted to obtain good statistics up to large pT. This feature is set via PhaseSpace:bias2Selection and PhaseSpace:bias2SelectionPow = 5.0. Use the event weights to obtain the correct pT distribution.

Authors:

  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
DOE Contract Number:  
AC02-06CH11357
Product Type:
Dataset
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). HepSim Monte Carlo Event Repository
Sponsoring Org.:
USDOE Office of Science (SC)
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Keywords:
SM; PYTHIA8; LO+PS+hadronisation; Monte Carlo; simulations; particle physics; high energy physics
OSTI Identifier:
1575701
DOI:
10.34664/1575701

Citation Formats

Chekanov, S. 14 TeV pp collisions, SM type, PYTHIA8 generator: tev14pp_qcd_pythia8_weighted. United States: N. p., 2017. Web. doi:10.34664/1575701.
Chekanov, S. 14 TeV pp collisions, SM type, PYTHIA8 generator: tev14pp_qcd_pythia8_weighted. United States. doi:10.34664/1575701.
Chekanov, S. 2017. "14 TeV pp collisions, SM type, PYTHIA8 generator: tev14pp_qcd_pythia8_weighted". United States. doi:10.34664/1575701. https://www.osti.gov/servlets/purl/1575701. Pub date:Thu Aug 24 00:00:00 EDT 2017
@article{osti_1575701,
title = {14 TeV pp collisions, SM type, PYTHIA8 generator: tev14pp_qcd_pythia8_weighted},
author = {Chekanov, S.},
abstractNote = {Inclusive dijet events for pT>40 GeV. (PhaseSpace:pTHatMin=40 GeV). PDF: LHAPDF6:NNPDF23_lo_as_0130_qed and Tune:pp = 14 (Monash 2013 Tune). 5,000 events per file. How to use: The events are weighted to obtain good statistics up to large pT. This feature is set via PhaseSpace:bias2Selection and PhaseSpace:bias2SelectionPow = 5.0. Use the event weights to obtain the correct pT distribution.},
doi = {10.34664/1575701},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {8}
}

Dataset:

Save / Share: