skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 100 TeV pp collisions, Exotics type, PYTHIA8 generator: tev100pp_qstar_pythia8_mbins

Abstract

Excited Fermions in mass range pT=5-60 TeV. 1000 events per file, 100 files per mass. Compositeness scale (Lambda) is set to the mass of the fermion, so the width is expected to be small (see the log files for details) Cross sections are included in the log files (mass dependent).

Authors:

  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
DOE Contract Number:  
AC02-06CH11357
Product Type:
Dataset
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). HepSim Monte Carlo Event Repository
Sponsoring Org.:
USDOE Office of Science (SC)
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Keywords:
Exotics; PYTHIA8; LO+PS+hadronisation; Monte Carlo; simulations; particle physics; high energy physics
OSTI Identifier:
1575634
DOI:
10.34664/1575634

Citation Formats

Chekanov, S. 100 TeV pp collisions, Exotics type, PYTHIA8 generator: tev100pp_qstar_pythia8_mbins. United States: N. p., 2016. Web. doi:10.34664/1575634.
Chekanov, S. 100 TeV pp collisions, Exotics type, PYTHIA8 generator: tev100pp_qstar_pythia8_mbins. United States. doi:10.34664/1575634.
Chekanov, S. 2016. "100 TeV pp collisions, Exotics type, PYTHIA8 generator: tev100pp_qstar_pythia8_mbins". United States. doi:10.34664/1575634. https://www.osti.gov/servlets/purl/1575634. Pub date:Tue Aug 23 00:00:00 EDT 2016
@article{osti_1575634,
title = {100 TeV pp collisions, Exotics type, PYTHIA8 generator: tev100pp_qstar_pythia8_mbins},
author = {Chekanov, S.},
abstractNote = {Excited Fermions in mass range pT=5-60 TeV. 1000 events per file, 100 files per mass. Compositeness scale (Lambda) is set to the mass of the fermion, so the width is expected to be small (see the log files for details) Cross sections are included in the log files (mass dependent).},
doi = {10.34664/1575634},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {8}
}

Dataset:

Save / Share: