# Formation of solitary zonal structures via the modulational instability of drift waves

## Abstract

{\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600{\fonttbl\f0\fswiss\fcharset0 Helvetica;}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}{\*\expandedcolortbl;;\cssrgb\c0\c0\c0;}\margl1440\margr1440\vieww10800\viewh8400\viewkind0\pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0\f0\fs38 \cf2 The dynamics of the radial envelope of a weak coherent drift wave is approximately governed by a nonlinear Schr\'f6dinger equation, which emerges as a limit of the modified Hasegawa\'97Mima equation. The nonlinear Schr\'f6dinger equation has well-known soliton solutions, and its modulational instability can naturally generate solitary structures. In this paper, we demonstrate that this simple model can adequately describe the formation of solitary zonal structures in the modified Hasegawa\'97Mima equation, but only when the amplitude of the coherent drift wave is relatively small. At larger amplitudes, the modulational instability produces stationary zonal structures instead. Furthermore, we find that incoherent drift waves with beam-like spectra can also be modulationally unstable to the formation of solitary or stationary zonal structures, depending on the beam intensity. Notably, we show that these drift waves can be modeled as quantumlike particles (\'93driftons\'94) within a recently developed phase-space (Wigner\'97Moyal) formulation, which intuitively depicts the solitary zonal structures as quasi-monochromatic drifton condensates. Quantumlike effects, such as diffraction, are essential to these condensates; hence, the latter cannot be described by wave-kinetic models that are based on the ray approximation.\}

- Authors:

- Publication Date:

- Product Type:
- Dataset

- Research Org.:
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

- Sponsoring Org.:
- U. S. Department of Energy

- Keywords:
- Solitons

- OSTI Identifier:
- 1562106

- DOI:
- 10.11578/1562106

### Citation Formats

```
Zhou, Yao, Zhu, Hongxuan, and Dodin, I Y.
```*Formation of solitary zonal structures via the modulational instability of drift waves*. United States: N. p., 2019.
Web. doi:10.11578/1562106.

```
Zhou, Yao, Zhu, Hongxuan, & Dodin, I Y.
```*Formation of solitary zonal structures via the modulational instability of drift waves*. United States. doi:10.11578/1562106.

```
Zhou, Yao, Zhu, Hongxuan, and Dodin, I Y. 2019.
"Formation of solitary zonal structures via the modulational instability of drift waves". United States. doi:10.11578/1562106. https://www.osti.gov/servlets/purl/1562106. Pub date:Sat Jun 01 00:00:00 EDT 2019
```

```
@article{osti_1562106,
```

title = {Formation of solitary zonal structures via the modulational instability of drift waves},

author = {Zhou, Yao and Zhu, Hongxuan and Dodin, I Y},

abstractNote = {{\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600{\fonttbl\f0\fswiss\fcharset0 Helvetica;}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}{\*\expandedcolortbl;;\cssrgb\c0\c0\c0;}\margl1440\margr1440\vieww10800\viewh8400\viewkind0\pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0\f0\fs38 \cf2 The dynamics of the radial envelope of a weak coherent drift wave is approximately governed by a nonlinear Schr\'f6dinger equation, which emerges as a limit of the modified Hasegawa\'97Mima equation. The nonlinear Schr\'f6dinger equation has well-known soliton solutions, and its modulational instability can naturally generate solitary structures. In this paper, we demonstrate that this simple model can adequately describe the formation of solitary zonal structures in the modified Hasegawa\'97Mima equation, but only when the amplitude of the coherent drift wave is relatively small. At larger amplitudes, the modulational instability produces stationary zonal structures instead. Furthermore, we find that incoherent drift waves with beam-like spectra can also be modulationally unstable to the formation of solitary or stationary zonal structures, depending on the beam intensity. Notably, we show that these drift waves can be modeled as quantumlike particles (\'93driftons\'94) within a recently developed phase-space (Wigner\'97Moyal) formulation, which intuitively depicts the solitary zonal structures as quasi-monochromatic drifton condensates. Quantumlike effects, such as diffraction, are essential to these condensates; hence, the latter cannot be described by wave-kinetic models that are based on the ray approximation.\}},

doi = {10.11578/1562106},

journal = {},

number = ,

volume = ,

place = {United States},

year = {2019},

month = {6}

}