skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on CaAl2SiO6 by Materials Project

Abstract

CaAl2SiO6 is Esseneite-like structured and crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. Ca2+ is bonded in a 8-coordinate geometry to eight O2- atoms. There are a spread of Ca–O bond distances ranging from 2.34–2.87 Å. There are two inequivalent Al3+ sites. In the first Al3+ site, Al3+ is bonded to four O2- atoms to form AlO4 tetrahedra that share corners with three equivalent AlO6 octahedra and corners with two equivalent AlO4 tetrahedra. The corner-sharing octahedra tilt angles range from 40–65°. There are a spread of Al–O bond distances ranging from 1.74–1.80 Å. In the second Al3+ site, Al3+ is bonded to six O2- atoms to form AlO6 octahedra that share corners with three equivalent AlO4 tetrahedra, corners with three equivalent SiO4 tetrahedra, and edges with two equivalent AlO6 octahedra. There are a spread of Al–O bond distances ranging from 1.82–2.15 Å. Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share corners with three equivalent AlO6 octahedra and corners with two equivalent SiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 32–57°. There are a spread of Si–O bond distances ranging from 1.61–1.68 Å. There are six inequivalent O2- sites. In the firstmore » O2- site, O2- is bonded to one Ca2+ and three Al3+ atoms to form distorted corner-sharing OCaAl3 tetrahedra. In the second O2- site, O2- is bonded in a 3-coordinate geometry to one Ca2+ and two Al3+ atoms. In the third O2- site, O2- is bonded in a 4-coordinate geometry to two equivalent Ca2+ and two equivalent Al3+ atoms. In the fourth O2- site, O2- is bonded in a 4-coordinate geometry to one Ca2+, two equivalent Al3+, and one Si4+ atom. In the fifth O2- site, O2- is bonded in a 3-coordinate geometry to one Ca2+, one Al3+, and one Si4+ atom. In the sixth O2- site, O2- is bonded in a 2-coordinate geometry to two equivalent Ca2+ and two equivalent Si4+ atoms.« less

Publication Date:
Other Number(s):
mp-1019583
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; CaAl2SiO6; Al-Ca-O-Si
OSTI Identifier:
1350740
DOI:
10.17188/1350740

Citation Formats

The Materials Project. Materials Data on CaAl2SiO6 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1350740.
The Materials Project. Materials Data on CaAl2SiO6 by Materials Project. United States. doi:10.17188/1350740.
The Materials Project. 2020. "Materials Data on CaAl2SiO6 by Materials Project". United States. doi:10.17188/1350740. https://www.osti.gov/servlets/purl/1350740. Pub date:Wed Jul 22 00:00:00 EDT 2020
@article{osti_1350740,
title = {Materials Data on CaAl2SiO6 by Materials Project},
author = {The Materials Project},
abstractNote = {CaAl2SiO6 is Esseneite-like structured and crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. Ca2+ is bonded in a 8-coordinate geometry to eight O2- atoms. There are a spread of Ca–O bond distances ranging from 2.34–2.87 Å. There are two inequivalent Al3+ sites. In the first Al3+ site, Al3+ is bonded to four O2- atoms to form AlO4 tetrahedra that share corners with three equivalent AlO6 octahedra and corners with two equivalent AlO4 tetrahedra. The corner-sharing octahedra tilt angles range from 40–65°. There are a spread of Al–O bond distances ranging from 1.74–1.80 Å. In the second Al3+ site, Al3+ is bonded to six O2- atoms to form AlO6 octahedra that share corners with three equivalent AlO4 tetrahedra, corners with three equivalent SiO4 tetrahedra, and edges with two equivalent AlO6 octahedra. There are a spread of Al–O bond distances ranging from 1.82–2.15 Å. Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share corners with three equivalent AlO6 octahedra and corners with two equivalent SiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 32–57°. There are a spread of Si–O bond distances ranging from 1.61–1.68 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to one Ca2+ and three Al3+ atoms to form distorted corner-sharing OCaAl3 tetrahedra. In the second O2- site, O2- is bonded in a 3-coordinate geometry to one Ca2+ and two Al3+ atoms. In the third O2- site, O2- is bonded in a 4-coordinate geometry to two equivalent Ca2+ and two equivalent Al3+ atoms. In the fourth O2- site, O2- is bonded in a 4-coordinate geometry to one Ca2+, two equivalent Al3+, and one Si4+ atom. In the fifth O2- site, O2- is bonded in a 3-coordinate geometry to one Ca2+, one Al3+, and one Si4+ atom. In the sixth O2- site, O2- is bonded in a 2-coordinate geometry to two equivalent Ca2+ and two equivalent Si4+ atoms.},
doi = {10.17188/1350740},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {7}
}

Dataset:

Save / Share: