skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Mn6O7F5 by Materials Project

Abstract

Mn6O7F5 is zeta iron carbide-derived structured and crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Mn+3.17+ sites. In the first Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form MnO4F2 octahedra that share corners with eight MnO4F2 octahedra and edges with two MnO2F4 octahedra. The corner-sharing octahedra tilt angles range from 45–58°. There are a spread of Mn–O bond distances ranging from 1.93–2.03 Å. There are one shorter (2.01 Å) and one longer (2.18 Å) Mn–F bond lengths. In the second Mn+3.17+ site, Mn+3.17+ is bonded to two O2- and four F1- atoms to form a mixture of corner and edge-sharing MnO2F4 octahedra. The corner-sharing octahedra tilt angles range from 43–58°. There is one shorter (1.95 Å) and one longer (1.98 Å) Mn–O bond length. There are a spread of Mn–F bond distances ranging from 2.01–2.13 Å. In the third Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form distorted MnO3F3 octahedra that share corners with eight MnO4F2 octahedra and edges with two MnO2F4 octahedra. The corner-sharing octahedra tilt angles range from 45–61°. There are a spread of Mn–O bond distances ranging frommore » 1.97–1.99 Å. There are a spread of Mn–F bond distances ranging from 2.08–2.20 Å. In the fourth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 47–62°. There are a spread of Mn–O bond distances ranging from 1.99–2.07 Å. There are one shorter (2.17 Å) and one longer (2.19 Å) Mn–F bond lengths. In the fifth Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form a mixture of corner and edge-sharing MnO3F3 octahedra. The corner-sharing octahedra tilt angles range from 47–58°. There is one shorter (1.95 Å) and two longer (1.96 Å) Mn–O bond length. There are a spread of Mn–F bond distances ranging from 2.01–2.13 Å. In the sixth Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form MnO3F3 octahedra that share corners with eight MnO4F2 octahedra and edges with two MnO3F3 octahedra. The corner-sharing octahedra tilt angles range from 44–61°. There are a spread of Mn–O bond distances ranging from 1.92–2.03 Å. There are a spread of Mn–F bond distances ranging from 2.01–2.25 Å. In the seventh Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 46–60°. There are a spread of Mn–O bond distances ranging from 1.96–2.03 Å. There are one shorter (2.10 Å) and one longer (2.11 Å) Mn–F bond lengths. In the eighth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form MnO4F2 octahedra that share corners with eight MnO3F3 octahedra and edges with two MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 44–59°. There are a spread of Mn–O bond distances ranging from 1.89–1.94 Å. There are one shorter (2.01 Å) and one longer (2.06 Å) Mn–F bond lengths. In the ninth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 47–58°. There is two shorter (1.96 Å) and two longer (2.00 Å) Mn–O bond length. There are one shorter (2.14 Å) and one longer (2.16 Å) Mn–F bond lengths. In the tenth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form MnO4F2 octahedra that share corners with eight MnO2F4 octahedra and edges with two MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 45–61°. There are a spread of Mn–O bond distances ranging from 1.88–1.95 Å. There are one shorter (2.03 Å) and one longer (2.04 Å) Mn–F bond lengths. In the eleventh Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 43–58°. There are a spread of Mn–O bond distances ranging from 1.86–2.01 Å. There are one shorter (2.00 Å) and one longer (2.03 Å) Mn–F bond lengths. In the twelfth Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form a mixture of corner and edge-sharing MnO3F3 octahedra. The corner-sharing octahedra tilt angles range from 47–62°. There is one shorter (1.92 Å) and two longer (2.01 Å) Mn–O bond length. There are a spread of Mn–F bond distances ranging from 2.01–2.16 Å. There are fourteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the seventh O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the eighth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the ninth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the eleventh O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the twelfth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the thirteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the fourteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. There are ten inequivalent F1- sites. In the first F1- site, F1- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the second F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the third F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the fourth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the fifth F1- site, F1- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the sixth F1- site, F1- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the seventh F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the eighth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the ninth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the tenth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms.« less

Publication Date:
Other Number(s):
mp-780185
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Mn6O7F5; F-Mn-O
OSTI Identifier:
1306891
DOI:
10.17188/1306891

Citation Formats

The Materials Project. Materials Data on Mn6O7F5 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1306891.
The Materials Project. Materials Data on Mn6O7F5 by Materials Project. United States. doi:10.17188/1306891.
The Materials Project. 2020. "Materials Data on Mn6O7F5 by Materials Project". United States. doi:10.17188/1306891. https://www.osti.gov/servlets/purl/1306891. Pub date:Thu Jun 04 00:00:00 EDT 2020
@article{osti_1306891,
title = {Materials Data on Mn6O7F5 by Materials Project},
author = {The Materials Project},
abstractNote = {Mn6O7F5 is zeta iron carbide-derived structured and crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Mn+3.17+ sites. In the first Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form MnO4F2 octahedra that share corners with eight MnO4F2 octahedra and edges with two MnO2F4 octahedra. The corner-sharing octahedra tilt angles range from 45–58°. There are a spread of Mn–O bond distances ranging from 1.93–2.03 Å. There are one shorter (2.01 Å) and one longer (2.18 Å) Mn–F bond lengths. In the second Mn+3.17+ site, Mn+3.17+ is bonded to two O2- and four F1- atoms to form a mixture of corner and edge-sharing MnO2F4 octahedra. The corner-sharing octahedra tilt angles range from 43–58°. There is one shorter (1.95 Å) and one longer (1.98 Å) Mn–O bond length. There are a spread of Mn–F bond distances ranging from 2.01–2.13 Å. In the third Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form distorted MnO3F3 octahedra that share corners with eight MnO4F2 octahedra and edges with two MnO2F4 octahedra. The corner-sharing octahedra tilt angles range from 45–61°. There are a spread of Mn–O bond distances ranging from 1.97–1.99 Å. There are a spread of Mn–F bond distances ranging from 2.08–2.20 Å. In the fourth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 47–62°. There are a spread of Mn–O bond distances ranging from 1.99–2.07 Å. There are one shorter (2.17 Å) and one longer (2.19 Å) Mn–F bond lengths. In the fifth Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form a mixture of corner and edge-sharing MnO3F3 octahedra. The corner-sharing octahedra tilt angles range from 47–58°. There is one shorter (1.95 Å) and two longer (1.96 Å) Mn–O bond length. There are a spread of Mn–F bond distances ranging from 2.01–2.13 Å. In the sixth Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form MnO3F3 octahedra that share corners with eight MnO4F2 octahedra and edges with two MnO3F3 octahedra. The corner-sharing octahedra tilt angles range from 44–61°. There are a spread of Mn–O bond distances ranging from 1.92–2.03 Å. There are a spread of Mn–F bond distances ranging from 2.01–2.25 Å. In the seventh Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 46–60°. There are a spread of Mn–O bond distances ranging from 1.96–2.03 Å. There are one shorter (2.10 Å) and one longer (2.11 Å) Mn–F bond lengths. In the eighth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form MnO4F2 octahedra that share corners with eight MnO3F3 octahedra and edges with two MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 44–59°. There are a spread of Mn–O bond distances ranging from 1.89–1.94 Å. There are one shorter (2.01 Å) and one longer (2.06 Å) Mn–F bond lengths. In the ninth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 47–58°. There is two shorter (1.96 Å) and two longer (2.00 Å) Mn–O bond length. There are one shorter (2.14 Å) and one longer (2.16 Å) Mn–F bond lengths. In the tenth Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form MnO4F2 octahedra that share corners with eight MnO2F4 octahedra and edges with two MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 45–61°. There are a spread of Mn–O bond distances ranging from 1.88–1.95 Å. There are one shorter (2.03 Å) and one longer (2.04 Å) Mn–F bond lengths. In the eleventh Mn+3.17+ site, Mn+3.17+ is bonded to four O2- and two F1- atoms to form a mixture of corner and edge-sharing MnO4F2 octahedra. The corner-sharing octahedra tilt angles range from 43–58°. There are a spread of Mn–O bond distances ranging from 1.86–2.01 Å. There are one shorter (2.00 Å) and one longer (2.03 Å) Mn–F bond lengths. In the twelfth Mn+3.17+ site, Mn+3.17+ is bonded to three O2- and three F1- atoms to form a mixture of corner and edge-sharing MnO3F3 octahedra. The corner-sharing octahedra tilt angles range from 47–62°. There is one shorter (1.92 Å) and two longer (2.01 Å) Mn–O bond length. There are a spread of Mn–F bond distances ranging from 2.01–2.16 Å. There are fourteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the seventh O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the eighth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the ninth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the eleventh O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the twelfth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the thirteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the fourteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. There are ten inequivalent F1- sites. In the first F1- site, F1- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the second F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the third F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the fourth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the fifth F1- site, F1- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the sixth F1- site, F1- is bonded in a distorted trigonal planar geometry to three Mn+3.17+ atoms. In the seventh F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the eighth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the ninth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms. In the tenth F1- site, F1- is bonded in a 3-coordinate geometry to three Mn+3.17+ atoms.},
doi = {10.17188/1306891},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {6}
}

Dataset:

Save / Share: