skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li2CuPO4 by Materials Project

Abstract

Li2CuPO4 is beta beryllia-derived structured and crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are eight inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four LiO4 tetrahedra, corners with four CuO4 tetrahedra, and corners with four PO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.00–2.11 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.00–2.09 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.94–2.01 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four LiO4 tetrahedra, corners with four CuO4 tetrahedra, and corners with four PO4 tetrahedra. There are a spreadmore » of Li–O bond distances ranging from 1.93–2.03 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share a cornercorner with one CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with seven LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.97–2.03 Å. In the sixth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.98–2.05 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.00–2.10 Å. In the eighth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.99–2.03 Å. There are four inequivalent Cu1+ sites. In the first Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.05–2.16 Å. In the second Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.06–2.12 Å. In the third Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share a cornercorner with one CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with seven LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.06–2.11 Å. In the fourth Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.08–2.11 Å. There are four inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five CuO4 tetrahedra and corners with seven LiO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.55–1.57 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CuO4 tetrahedra and corners with nine LiO4 tetrahedra. There is three shorter (1.56 Å) and one longer (1.57 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CuO4 tetrahedra and corners with nine LiO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.55–1.57 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five CuO4 tetrahedra and corners with seven LiO4 tetrahedra. There is three shorter (1.56 Å) and one longer (1.57 Å) P–O bond length. There are sixteen inequivalent O2- sites. In the first O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the second O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the third O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the fourth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the fifth O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the sixth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the seventh O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the eighth O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the ninth O2- site, O2- is bonded to one Li1+, two Cu1+, and one P5+ atom to form distorted corner-sharing OLiCu2P tetrahedra. In the tenth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the eleventh O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the twelfth O2- site, O2- is bonded in a 4-coordinate geometry to two Li1+, one Cu1+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded to one Li1+, two Cu1+, and one P5+ atom to form distorted corner-sharing OLiCu2P tetrahedra. In the fourteenth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the fifteenth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the sixteenth O2- site, O2- is bonded in a 4-coordinate geometry to three Cu1+ and one P5+ atom.« less

Publication Date:
Other Number(s):
mp-778949
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li2CuPO4; Cu-Li-O-P
OSTI Identifier:
1305983
DOI:
10.17188/1305983

Citation Formats

The Materials Project. Materials Data on Li2CuPO4 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1305983.
The Materials Project. Materials Data on Li2CuPO4 by Materials Project. United States. doi:10.17188/1305983.
The Materials Project. 2020. "Materials Data on Li2CuPO4 by Materials Project". United States. doi:10.17188/1305983. https://www.osti.gov/servlets/purl/1305983. Pub date:Sat May 02 00:00:00 EDT 2020
@article{osti_1305983,
title = {Materials Data on Li2CuPO4 by Materials Project},
author = {The Materials Project},
abstractNote = {Li2CuPO4 is beta beryllia-derived structured and crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are eight inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four LiO4 tetrahedra, corners with four CuO4 tetrahedra, and corners with four PO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.00–2.11 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.00–2.09 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.94–2.01 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four LiO4 tetrahedra, corners with four CuO4 tetrahedra, and corners with four PO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.93–2.03 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share a cornercorner with one CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with seven LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.97–2.03 Å. In the sixth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.98–2.05 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.00–2.10 Å. In the eighth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.99–2.03 Å. There are four inequivalent Cu1+ sites. In the first Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.05–2.16 Å. In the second Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.06–2.12 Å. In the third Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share a cornercorner with one CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with seven LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.06–2.11 Å. In the fourth Cu1+ site, Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with three CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with five LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.08–2.11 Å. There are four inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five CuO4 tetrahedra and corners with seven LiO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.55–1.57 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CuO4 tetrahedra and corners with nine LiO4 tetrahedra. There is three shorter (1.56 Å) and one longer (1.57 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CuO4 tetrahedra and corners with nine LiO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.55–1.57 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five CuO4 tetrahedra and corners with seven LiO4 tetrahedra. There is three shorter (1.56 Å) and one longer (1.57 Å) P–O bond length. There are sixteen inequivalent O2- sites. In the first O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the second O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the third O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the fourth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the fifth O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the sixth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the seventh O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the eighth O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the ninth O2- site, O2- is bonded to one Li1+, two Cu1+, and one P5+ atom to form distorted corner-sharing OLiCu2P tetrahedra. In the tenth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the eleventh O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the twelfth O2- site, O2- is bonded in a 4-coordinate geometry to two Li1+, one Cu1+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded to one Li1+, two Cu1+, and one P5+ atom to form distorted corner-sharing OLiCu2P tetrahedra. In the fourteenth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the fifteenth O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the sixteenth O2- site, O2- is bonded in a 4-coordinate geometry to three Cu1+ and one P5+ atom.},
doi = {10.17188/1305983},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}

Dataset:

Save / Share: