Materials Data on Li2TiV3O8 by Materials Project
Abstract
Li2TiV3O8 is Spinel-derived structured and crystallizes in the orthorhombic P2_12_12_1 space group. The structure is three-dimensional. there are two inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three equivalent TiO6 octahedra and corners with nine VO6 octahedra. The corner-sharing octahedra tilt angles range from 55–62°. There are a spread of Li–O bond distances ranging from 2.00–2.02 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three equivalent TiO6 octahedra and corners with nine VO6 octahedra. The corner-sharing octahedra tilt angles range from 53–62°. There are a spread of Li–O bond distances ranging from 1.99–2.03 Å. Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six LiO4 tetrahedra and edges with six VO6 octahedra. There are a spread of Ti–O bond distances ranging from 1.95–2.04 Å. There are three inequivalent V+3.33+ sites. In the first V+3.33+ site, V+3.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six LiO4 tetrahedra, edges with two equivalent TiO6 octahedra, and edges with four VO6 octahedra. Theremore »
- Authors:
- Publication Date:
- Other Number(s):
- mp-775564
- DOE Contract Number:
- AC02-05CH11231; EDCBEE
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Collaborations:
- MIT; UC Berkeley; Duke; U Louvain
- Subject:
- 36 MATERIALS SCIENCE
- Keywords:
- crystal structure; Li2TiV3O8; Li-O-Ti-V
- OSTI Identifier:
- 1303263
- DOI:
- https://doi.org/10.17188/1303263
Citation Formats
The Materials Project. Materials Data on Li2TiV3O8 by Materials Project. United States: N. p., 2020.
Web. doi:10.17188/1303263.
The Materials Project. Materials Data on Li2TiV3O8 by Materials Project. United States. doi:https://doi.org/10.17188/1303263
The Materials Project. 2020.
"Materials Data on Li2TiV3O8 by Materials Project". United States. doi:https://doi.org/10.17188/1303263. https://www.osti.gov/servlets/purl/1303263. Pub date:Thu Apr 30 00:00:00 EDT 2020
@article{osti_1303263,
title = {Materials Data on Li2TiV3O8 by Materials Project},
author = {The Materials Project},
abstractNote = {Li2TiV3O8 is Spinel-derived structured and crystallizes in the orthorhombic P2_12_12_1 space group. The structure is three-dimensional. there are two inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three equivalent TiO6 octahedra and corners with nine VO6 octahedra. The corner-sharing octahedra tilt angles range from 55–62°. There are a spread of Li–O bond distances ranging from 2.00–2.02 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three equivalent TiO6 octahedra and corners with nine VO6 octahedra. The corner-sharing octahedra tilt angles range from 53–62°. There are a spread of Li–O bond distances ranging from 1.99–2.03 Å. Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six LiO4 tetrahedra and edges with six VO6 octahedra. There are a spread of Ti–O bond distances ranging from 1.95–2.04 Å. There are three inequivalent V+3.33+ sites. In the first V+3.33+ site, V+3.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six LiO4 tetrahedra, edges with two equivalent TiO6 octahedra, and edges with four VO6 octahedra. There are a spread of V–O bond distances ranging from 1.86–2.02 Å. In the second V+3.33+ site, V+3.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six LiO4 tetrahedra, edges with two equivalent TiO6 octahedra, and edges with four VO6 octahedra. There are a spread of V–O bond distances ranging from 2.01–2.09 Å. In the third V+3.33+ site, V+3.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six LiO4 tetrahedra, edges with two equivalent TiO6 octahedra, and edges with four VO6 octahedra. There are a spread of V–O bond distances ranging from 2.02–2.09 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a rectangular see-saw-like geometry to one Li1+, one Ti4+, and two V+3.33+ atoms. In the second O2- site, O2- is bonded in a rectangular see-saw-like geometry to one Li1+, one Ti4+, and two V+3.33+ atoms. In the third O2- site, O2- is bonded in a rectangular see-saw-like geometry to one Li1+ and three V+3.33+ atoms. In the fourth O2- site, O2- is bonded in a distorted rectangular see-saw-like geometry to one Li1+, one Ti4+, and two V+3.33+ atoms. In the fifth O2- site, O2- is bonded to one Li1+, one Ti4+, and two V+3.33+ atoms to form distorted corner-sharing OLiTiV2 trigonal pyramids. In the sixth O2- site, O2- is bonded to one Li1+ and three V+3.33+ atoms to form a mixture of distorted corner and edge-sharing OLiV3 trigonal pyramids. In the seventh O2- site, O2- is bonded in a rectangular see-saw-like geometry to one Li1+, one Ti4+, and two V+3.33+ atoms. In the eighth O2- site, O2- is bonded to one Li1+, one Ti4+, and two V+3.33+ atoms to form distorted OLiTiV2 trigonal pyramids that share corners with three OLiTiV2 trigonal pyramids and an edgeedge with one OLiV3 trigonal pyramid.},
doi = {10.17188/1303263},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}