skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on MnV3(PO4)6 by Materials Project

Abstract

V3Mn(PO4)6 crystallizes in the trigonal R3 space group. The structure is three-dimensional. there are three inequivalent V5+ sites. In the first V5+ site, V5+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra. All V–O bond lengths are 1.93 Å. In the second V5+ site, V5+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra. There is three shorter (1.86 Å) and three longer (1.91 Å) V–O bond length. In the third V5+ site, V5+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra. There is three shorter (1.85 Å) and three longer (1.91 Å) V–O bond length. Mn3+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There is three shorter (1.90 Å) and three longer (1.94 Å) Mn–O bond length. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and corners with three VO6 octahedra. The corner-sharing octahedra tilt angles range from 23–32°. There aremore » a spread of P–O bond distances ranging from 1.53–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and corners with three VO6 octahedra. The corner-sharing octahedra tilt angles range from 23–35°. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom.« less

Authors:
Contributors:
Researcher:
Publication Date:
Other Number(s):
mp-774413
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; MnV3(PO4)6; Mn-O-P-V
OSTI Identifier:
1302572
DOI:
10.17188/1302572

Citation Formats

Persson, Kristin, and Project, Materials. Materials Data on MnV3(PO4)6 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1302572.
Persson, Kristin, & Project, Materials. Materials Data on MnV3(PO4)6 by Materials Project. United States. doi:10.17188/1302572.
Persson, Kristin, and Project, Materials. 2020. "Materials Data on MnV3(PO4)6 by Materials Project". United States. doi:10.17188/1302572. https://www.osti.gov/servlets/purl/1302572. Pub date:Thu Apr 30 00:00:00 EDT 2020
@article{osti_1302572,
title = {Materials Data on MnV3(PO4)6 by Materials Project},
author = {Persson, Kristin and Project, Materials},
abstractNote = {V3Mn(PO4)6 crystallizes in the trigonal R3 space group. The structure is three-dimensional. there are three inequivalent V5+ sites. In the first V5+ site, V5+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra. All V–O bond lengths are 1.93 Å. In the second V5+ site, V5+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra. There is three shorter (1.86 Å) and three longer (1.91 Å) V–O bond length. In the third V5+ site, V5+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra. There is three shorter (1.85 Å) and three longer (1.91 Å) V–O bond length. Mn3+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There is three shorter (1.90 Å) and three longer (1.94 Å) Mn–O bond length. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and corners with three VO6 octahedra. The corner-sharing octahedra tilt angles range from 23–32°. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and corners with three VO6 octahedra. The corner-sharing octahedra tilt angles range from 23–35°. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one V5+ and one P5+ atom.},
doi = {10.17188/1302572},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}

Dataset:

Save / Share: