Materials Data on LiTi2(PO4)3 by Materials Project
Abstract
LiTi2(PO4)3 crystallizes in the orthorhombic Pca2_1 space group. The structure is three-dimensional. Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.02 Å. There are two inequivalent Ti4+ sites. In the first Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Ti–O bond distances ranging from 1.92–2.00 Å. In the second Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Ti–O bond distances ranging from 1.85–2.06 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four TiO6 octahedra. The corner-sharing octahedra tilt angles range from 21–33°. There are a spread of P–O bond distances ranging from 1.52–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four TiO6 octahedra. The corner-sharing octahedra tilt angles range from 9–35°. There are a spread of P–O bond distancesmore »
- Publication Date:
- Other Number(s):
- mp-773017
- DOE Contract Number:
- AC02-05CH11231; EDCBEE
- Product Type:
- Dataset
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Subject:
- 36 MATERIALS SCIENCE
- Keywords:
- crystal structure; LiTi2(PO4)3; Li-O-P-Ti
- OSTI Identifier:
- 1301561
- DOI:
- 10.17188/1301561
Citation Formats
The Materials Project. Materials Data on LiTi2(PO4)3 by Materials Project. United States: N. p., 2020.
Web. doi:10.17188/1301561.
The Materials Project. Materials Data on LiTi2(PO4)3 by Materials Project. United States. doi:10.17188/1301561.
The Materials Project. 2020.
"Materials Data on LiTi2(PO4)3 by Materials Project". United States. doi:10.17188/1301561. https://www.osti.gov/servlets/purl/1301561. Pub date:Fri May 29 00:00:00 EDT 2020
@article{osti_1301561,
title = {Materials Data on LiTi2(PO4)3 by Materials Project},
author = {The Materials Project},
abstractNote = {LiTi2(PO4)3 crystallizes in the orthorhombic Pca2_1 space group. The structure is three-dimensional. Li1+ is bonded in a distorted see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.02 Å. There are two inequivalent Ti4+ sites. In the first Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Ti–O bond distances ranging from 1.92–2.00 Å. In the second Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Ti–O bond distances ranging from 1.85–2.06 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four TiO6 octahedra. The corner-sharing octahedra tilt angles range from 21–33°. There are a spread of P–O bond distances ranging from 1.52–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four TiO6 octahedra. The corner-sharing octahedra tilt angles range from 9–35°. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four TiO6 octahedra. The corner-sharing octahedra tilt angles range from 7–42°. There are a spread of P–O bond distances ranging from 1.52–1.56 Å. There are twelve inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti4+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti4+ and one P5+ atom. In the third O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one Ti4+, and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Ti4+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a linear geometry to one Ti4+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Ti4+, and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti4+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Ti4+, and one P5+ atom. In the ninth O2- site, O2- is bonded in a linear geometry to one Ti4+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti4+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti4+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti4+ and one P5+ atom.},
doi = {10.17188/1301561},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}