skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on LiTiP2O7 by Materials Project

Abstract

LiTiP2O7 crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. Li1+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Li–O bond distances ranging from 2.15–2.74 Å. Ti3+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Ti–O bond distances ranging from 1.96–2.14 Å. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three equivalent TiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 37–51°. There are a spread of P–O bond distances ranging from 1.53–1.64 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three equivalent TiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–60°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. There are seven inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted rectangular see-saw-like geometry to two equivalent Li1+, one Ti3+, andmore » one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti3+ and one P5+ atom. In the third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Ti3+, and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Li1+ and two P5+ atoms. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Ti3+, and one P5+ atom. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Ti3+, and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Ti3+ and one P5+ atom.« less

Publication Date:
Other Number(s):
mp-758145
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; LiTiP2O7; Li-O-P-Ti
OSTI Identifier:
1290996
DOI:
10.17188/1290996

Citation Formats

The Materials Project. Materials Data on LiTiP2O7 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1290996.
The Materials Project. Materials Data on LiTiP2O7 by Materials Project. United States. doi:10.17188/1290996.
The Materials Project. 2020. "Materials Data on LiTiP2O7 by Materials Project". United States. doi:10.17188/1290996. https://www.osti.gov/servlets/purl/1290996. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1290996,
title = {Materials Data on LiTiP2O7 by Materials Project},
author = {The Materials Project},
abstractNote = {LiTiP2O7 crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. Li1+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Li–O bond distances ranging from 2.15–2.74 Å. Ti3+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Ti–O bond distances ranging from 1.96–2.14 Å. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three equivalent TiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 37–51°. There are a spread of P–O bond distances ranging from 1.53–1.64 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three equivalent TiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–60°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. There are seven inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted rectangular see-saw-like geometry to two equivalent Li1+, one Ti3+, and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Ti3+ and one P5+ atom. In the third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Ti3+, and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Li1+ and two P5+ atoms. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Ti3+, and one P5+ atom. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Ti3+, and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Ti3+ and one P5+ atom.},
doi = {10.17188/1290996},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}

Dataset:

Save / Share: